4,372 research outputs found

    Some matrix nearness problems suggested by Tikhonov regularization

    Full text link
    The numerical solution of linear discrete ill-posed problems typically requires regularization, i.e., replacement of the available ill-conditioned problem by a nearby better conditioned one. The most popular regularization methods for problems of small to moderate size are Tikhonov regularization and truncated singular value decomposition (TSVD). By considering matrix nearness problems related to Tikhonov regularization, several novel regularization methods are derived. These methods share properties with both Tikhonov regularization and TSVD, and can give approximate solutions of higher quality than either one of these methods

    Numerical Analysis of the Non-uniform Sampling Problem

    Get PDF
    We give an overview of recent developments in the problem of reconstructing a band-limited signal from non-uniform sampling from a numerical analysis view point. It is shown that the appropriate design of the finite-dimensional model plays a key role in the numerical solution of the non-uniform sampling problem. In the one approach (often proposed in the literature) the finite-dimensional model leads to an ill-posed problem even in very simple situations. The other approach that we consider leads to a well-posed problem that preserves important structural properties of the original infinite-dimensional problem and gives rise to efficient numerical algorithms. Furthermore a fast multilevel algorithm is presented that can reconstruct signals of unknown bandwidth from noisy non-uniformly spaced samples. We also discuss the design of efficient regularization methods for ill-conditioned reconstruction problems. Numerical examples from spectroscopy and exploration geophysics demonstrate the performance of the proposed methods

    Randomized Dynamic Mode Decomposition

    Full text link
    This paper presents a randomized algorithm for computing the near-optimal low-rank dynamic mode decomposition (DMD). Randomized algorithms are emerging techniques to compute low-rank matrix approximations at a fraction of the cost of deterministic algorithms, easing the computational challenges arising in the area of `big data'. The idea is to derive a small matrix from the high-dimensional data, which is then used to efficiently compute the dynamic modes and eigenvalues. The algorithm is presented in a modular probabilistic framework, and the approximation quality can be controlled via oversampling and power iterations. The effectiveness of the resulting randomized DMD algorithm is demonstrated on several benchmark examples of increasing complexity, providing an accurate and efficient approach to extract spatiotemporal coherent structures from big data in a framework that scales with the intrinsic rank of the data, rather than the ambient measurement dimension. For this work we assume that the dynamics of the problem under consideration is evolving on a low-dimensional subspace that is well characterized by a fast decaying singular value spectrum
    corecore