806 research outputs found

    A modified secant method for unconstrained minimization

    Get PDF
    A gradient-secant algorithm for unconstrained optimization problems is presented. The algorithm uses Armijo gradient method iterations until it reaches a region where the Newton method is more efficient, and then switches over to a secant form of operation. It is concluded that an efficient method for unconstrained minimization has been developed, and that any convergent minimization method can be substituted for the Armijo gradient method

    Some Unconstrained Optimization Methods

    Get PDF
    Although it is a very old theme, unconstrained optimization is an area which is always actual for many scientists. Today, the results of unconstrained optimization are applied in different branches of science, as well as generally in practice. Here, we present the line search techniques. Further, in this chapter we consider some unconstrained optimization methods. We try to present these methods but also to present some contemporary results in this area

    A dai-liao hybrid hestenes-stiefel and fletcher-revees methods for unconstrained optimization

    Get PDF
    Some problems have no analytical solution or too difficult to solve by scientists, engineers, and mathematicians, so the development of numerical methods to obtain approximate solutions became necessary. Gradient methods are more efficient when the function to be minimized continuously in its first derivative. Therefore, this article presents a new hybrid Conjugate Gradient (CG) method to solve unconstrained optimization problems. The method requires the first-order derivatives but overcomes the steepest descent method’s shortcoming of slow convergence and needs not to save or compute the second-order derivatives needed by the Newton method. The CG update parameter is suggested from the Dai-Liao conjugacy condition as a convex combination of Hestenes-Stiefel and Fletcher-Revees algorithms by employing an optimal modulating choice parameterto avoid matrix storage. Numerical computation adopts an inexact line search to obtain the step-size that generates a decent property, showing that the algorithm is robust and efficient. The scheme converges globally under Wolfe line search, and it’s like is suitable in compressive sensing problems and M-tensor systems

    Modifications of the Limited Memory BFGS Algorithm for Large-scale Nonlinear Optimization

    Get PDF
    In this paper we present two new numerical methods for unconstrained large-scale optimization. These methods apply update formulae, which are derived by considering different techniques of approximating the objective function. Theoretical analysis is given to show the advantages of using these update formulae. It is observed that these update formulae can be employed within the framework of limited memory strategy with only a modest increase in the linear algebra cost. Comparative results with limited memory BFGS (L-BFGS) method are presented.</p

    A dai-liao hybrid conjugate gradient method for unconstrained optimization

    Get PDF
    One of todays’ best-performing CG methods is Dai-Liao (DL) method which depends on non-negative parameter  and conjugacy conditions for its computation. Although numerous optimal selections for the parameter were suggested, the best choice of  remains a subject of consideration. The pure conjugacy condition adopts an exact line search for numerical experiments and convergence analysis. Though, a practical mathematical experiment implies using an inexact line search to find the step size. To avoid such drawbacks, Dai and Liao substituted the earlier conjugacy condition with an extended conjugacy condition. Therefore, this paper suggests a new hybrid CG that combines the strength of Liu and Storey and Conjugate Descent CG methods by retaining a choice of Dai-Liao parameterthat is optimal. The theoretical analysis indicated that the search direction of the new CG scheme is descent and satisfies sufficient descent condition when the iterates jam under strong Wolfe line search. The algorithm is shown to converge globally using standard assumptions. The numerical experimentation of the scheme demonstrated that the proposed method is robust and promising than some known methods applying the performance profile Dolan and Mor´e on 250 unrestricted problems.  Numerical assessment of the tested CG algorithms with sparse signal reconstruction and image restoration in compressive sensing problems, file restoration, image video coding and other applications. The result shows that these CG schemes are comparable and can be applied in different fields such as temperature, fire, seismic sensors, and humidity detectors in forests, using wireless sensor network techniques

    Implementation of Symmetric Rank-One Methods for Unconstrained Optimization

    Get PDF
    The focus of this thesis is on analyzing the theoretical and computational aspects of some quasi-Newton (QN) methods for locating a minimum of a real valued function f over all vectors x 2 Rn. In many practical applications, the Hessian of the objective function may be too expensive to calculate or may even be unavailable in the explicit form. QN methods endeavor to circumvent the deciencies of Newtons method (while retaining the basic structure and thus preserving, as far as possible, its advantages) by constructing approximations for the Hessian iteratively. Among QN updates, symmetric rank-one (SR1) update has been shown to be an e®ective and reliable method of such algorithms. However, SR1 is an awkward method, even though its performance is in general better than well known QN updates. The problem is that the SR1 update may not retain positive deniteness and may become undened because the denominator becomes zero. In recent years considerable attention has been directed towards preserving and ensuring the positive deniteness of SR1 update, but improving the quality of the estimates has rarely been studied in depth. Our purpose in this thesis is to improve the Hessian approximation updates and study the computational performance and convergence property of this update. First, we brie°y give some mathematical background. A review of di®erent minimization methods that can be used to solve unconstrained optimization problems is also given. We consider a modification of secant equation for the SR1 update. In this method, the Hessian approximation is updated based on modifed secant equation, which uses both gradient and function value information in order to get a higher-order accuracy in approximating the second curvature of the objec- tive function. We then examine a new scaled memoryless SR1 method based on modied secant equation for solving large-scale unconstrained optimization problems. We prove that the new method possesses global convergence. The rate of convergence of such algorithms are also discussed. Due to the presence of SR1 deciencies, we introduce a restarting procedure using eigenvalue of the SR1 update. We also introduce a variety of techniques to improve Hessian approximations of the SR1 method for small to large-sized problems, including multi-step, extra updating methods along with the structured method which uses partial information on Hessian. Variants of SR1 update are tested numerically and compared to several other famous minimization methods. Finally, we comment on some achievement in our research. Possible extensions are also given to conclude this thesis
    corecore