139 research outputs found

    Incomplete Augmented Lagrangian Preconditioner for Steady Incompressible Navier-Stokes Equations

    Get PDF
    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids

    A class of nonsymmetric preconditioners for saddle point problems

    Get PDF
    For iterative solution of saddle point problems, a nonsymmetric preconditioning is studied which, with respect to the upper-left block of the system matrix, can be seen as a variant of SSOR. An idealized situation where the SSOR is taken with respect to the skew-symmetric part plus the diagonal part of the upper-left block is analyzed in detail. Since action of the preconditioner involves solution of a Schur complement system, an inexact form of the preconditioner can be of interest. This results in an inner-outer iterative process. Numerical experiments with solution of linearized Navier-Stokes equations demonstrate efficiency of the new preconditioner, especially when the left-upper block is far from symmetric

    Monolithic Overlapping Schwarz Domain Decomposition Methods with GDSW Coarse Spaces for Saddle Point Problems

    Get PDF
    Monolithic overlapping Schwarz preconditioners for saddle point problems of Stokes, Navier-Stokes, and mixed linear elasticity ty e are presented. For the first time, coarse spaces obtained from the GDSW (Generalized Dryja-Smith-Widlund) approach are used in such a setting. Numerical results of our parallel implementation are presented for several model problems. In particular, cases are considered where the problem cannot or should not b e reduced using local static condensation, e.g., Stokes, Navier-Stokes or mixed elasticity problems with continuous pressure spaces. In the new monolithic preconditioners, the local overlapping problems and the coarse problem are saddle point problems with the same structure as the original problem. Our parallel implementation of these preconditioners is based on the FROSch (Fast and Robust Overlapping Schwarz) library, which is part of the Trilinos package ShyLU. The implementation is algebraic in the sense that the preconditioners can be constructed from the fully assembled stiffness matrix and information about the block structure of the problem. Parallel scalability results for several thousand cores for Stokes, Navier-Stokes, and mixed linear elasticity model problems are reported. Each of the local problems is solved using a direct solver in serial mo de, whereas the coarse problem is solved using a direct solver in serial or MPI-parallel mode or using an MPI-parallel iterative Krylov solve

    A splitting preconditioner for the incompressible navier–stokes equations

    Get PDF
    In this paper, a splitting preconditioner based on the relaxed dimensional factorization (RDF) preconditioner and the modified augmented Lagrangian (MAL) preconditioner for the incompressible Navier–Stokes equations is presented. The preconditioned matrix is analyzed, and similar results arising from the RDF and the MAL preconditioners are obtained. The corresponding details of the spectrum analysis are given. Finally, we compare the three preconditioners and numerical experiments are implemented by using the IFISS package

    Incompressible Lagrangian fluid flow with thermal coupling

    Get PDF
    In this monograph is presented a method for the solution of an incompressible viscous fluid flow with heat transfer and solidification usin a fully Lagrangian description on the motion. The originality of this method consists in assembling various concepts and techniques which appear naturally due to the Lagrangian formulation.Postprint (published version
    • …
    corecore