27,170 research outputs found

    The convergence of quasi-Gauss-Newton methods for nonlinear problems

    Get PDF
    AbstractQuasi-Gauss-Newton methods for nonlinear equations are investigated. A Quasi-Gauss-Newton method is proposed. In this method, the Jacobian is modified by a convex combination of Broyden's update and a weighted update. The convergence of the method described by Wang and Tewarson in [1] and the proposed method is proved. Computational evidence is given in support of the relative efficiency of the proposed method

    Two derivative-free methods for solving underdetermined nonlinear systems of equations

    Get PDF
    In this paper, two different approaches to solve underdetermined nonlinear system of equations are proposed. In one of them, the derivative-free method defined by La Cruz, Martínez and Raydan for solving square nonlinear systems is modified and extended to cope with the underdetermined case. The other approach is a Quasi-Newton method that uses the Broyden update formula and the globalized line search that combines the strategy of Grippo, Lampariello and Lucidi with the Li and Fukushima one. Global convergence results for both methods are proved and numerical experiments are presented.Facultad de Ciencias Exacta

    Two derivative-free methods for solving underdetermined nonlinear systems of equations

    Get PDF
    In this paper, two different approaches to solve underdetermined nonlinear system of equations are proposed. In one of them, the derivative-free method defined by La Cruz, Martínez and Raydan for solving square nonlinear systems is modified and extended to cope with the underdetermined case. The other approach is a Quasi-Newton method that uses the Broyden update formula and the globalized line search that combines the strategy of Grippo, Lampariello and Lucidi with the Li and Fukushima one. Global convergence results for both methods are proved and numerical experiments are presented.Facultad de Ciencias Exacta

    Multidimensional Homeier's generalized class and its application to planar 1D Bratu problem

    Full text link
    [EN] In this paper, a parametric family of iterative methods for solving nonlinear systems, including Homeier’s scheme is presented, proving its third-order of convergence. The numerical section is devoted to obtain an estimation of the solution of the classical Bratu problem by transforming it in a nonlinear system by using finite differences, and solving it with different elements of the iterative family.This research was supported by Ministerio de Economía y Competitividad MTM2014-52016-C02-02.Cordero Barbero, A.; Franqués García, AM.; Torregrosa Sánchez, JR. (2015). Multidimensional Homeier's generalized class and its application to planar 1D Bratu problem. Journal of the Spanish Society of Applied Mathematics. 70(1):1-10. https://doi.org/10.1007/s40324-015-0037-xS110701Abad, M. F., Cordero, A., Torregrosa, J. R.: Fourth-and fifth-order for solving nonlinear systems of equations: an application to the global positioning system, Abstr. Appl. Anal. (2013) (Article ID 586708)Andreu, C., Cambil, N., Cordero, A., Torregrosa, J.R.: Preliminary orbit determination of artificial satellites: a vectorial sixth-order approach, Abstr. Appl. Anal. (2013) (Article ID 960582)Awawdeh, F.: On new iterative method for solving systems of nonlinear equations. Numer. Algorithms 54, 395–409 (2010)Boyd, J.P.: One-point pseudospectral collocation for the one-dimensional Bratu equation. Appl. Math. Comput. 217, 5553–5565 (2011)Bratu, G.: Sur les equation integrals non-lineaires. Bull. Math. Soc. France 42, 113–142 (1914)Buckmire, R.: Applications of Mickens finite differences to several related boundary value problems. In: Mickens, R.E. (ed.) Advances in the Applications of Nonstandard Finite Difference Schemes, pp. 47–87. World Scientific Publishing, Singapore (2005)Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A modified Newton-Jarratt’s composition. Numer. Algorithms 55, 87–99 (2010)Gelfand, I.M.: Some problems in the theory of quasi-linear equations. Trans. Am. Math. Soc. Ser. 2, 295–381 (1963)Homeier, H.H.H.: On Newton-tyoe methods with cubic convergence. J. Comput. Appl. Math. 176, 425–432 (2005)Jacobsen, J., Schmitt, K.: The Liouville-Bratu-Gelfand problem for radial operators. J. Differ. Equ. 184, 283–298 (2002)Jalilian, R.: Non-polynomial spline method for solving Bratu’s problem. Comput. Phys. Comm. 181, 1868–1872 (2010)Kanwar, V., Kumar, S., Behl, R.: Several new families of Jarratts method for solving systems of nonlinear equations. Appl. Appl. Math. 8(2), 701–716 (2013)Mohsen, A.: A simple solution of the Bratu problem. Comput. Math. with Appl. 67, 26–33 (2014)Petković, M., Neta, B., Petković, L., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, Amsterdam (2013)Sharma, J.R., Guna, R.K., Sharma, R.: An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 62, 307–323 (2013)Sharma, J.R., Arora, H.: On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput. 222, 497–506 (2013)Traub, J.F.: Iterative Methods for the Solution of Equations. Chelsea Publishing Company, New York (1982)Wan, Y.Q., Guo, Q., Pan, N.: Thermo-electro-hydrodynamic model for electrospinning process. Int. J. Nonlinear Sci. Numer. Simul. 5, 5–8 (2004

    Refraction-corrected ray-based inversion for three-dimensional ultrasound tomography of the breast

    Get PDF
    Ultrasound Tomography has seen a revival of interest in the past decade, especially for breast imaging, due to improvements in both ultrasound and computing hardware. In particular, three-dimensional ultrasound tomography, a fully tomographic method in which the medium to be imaged is surrounded by ultrasound transducers, has become feasible. In this paper, a comprehensive derivation and study of a robust framework for large-scale bent-ray ultrasound tomography in 3D for a hemispherical detector array is presented. Two ray-tracing approaches are derived and compared. More significantly, the problem of linking the rays between emitters and receivers, which is challenging in 3D due to the high number of degrees of freedom for the trajectory of rays, is analysed both as a minimisation and as a root-finding problem. The ray-linking problem is parameterised for a convex detection surface and three robust, accurate, and efficient ray-linking algorithms are formulated and demonstrated. To stabilise these methods, novel adaptive-smoothing approaches are proposed that control the conditioning of the update matrices to ensure accurate linking. The nonlinear UST problem of estimating the sound speed was recast as a series of linearised subproblems, each solved using the above algorithms and within a steepest descent scheme. The whole imaging algorithm was demonstrated to be robust and accurate on realistic data simulated using a full-wave acoustic model and an anatomical breast phantom, and incorporating the errors due to time-of-flight picking that would be present with measured data. This method can used to provide a low-artefact, quantitatively accurate, 3D sound speed maps. In addition to being useful in their own right, such 3D sound speed maps can be used to initialise full-wave inversion methods, or as an input to photoacoustic tomography reconstructions
    • …
    corecore