38 research outputs found

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    First order algorithms in variational image processing

    Get PDF
    Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on tasks like denoising, deblurring, inpainting, segmentation, super-resolution, disparity, and optical flow estimation. The overall structure of such approaches is of the form D(Ku)+αR(u)minu{\cal D}(Ku) + \alpha {\cal R} (u) \rightarrow \min_u ; where the functional D{\cal D} is a data fidelity term also depending on some input data ff and measuring the deviation of KuKu from such and R{\cal R} is a regularization functional. Moreover KK is a (often linear) forward operator modeling the dependence of data on an underlying image, and α\alpha is a positive regularization parameter. While D{\cal D} is often smooth and (strictly) convex, the current practice almost exclusively uses nonsmooth regularization functionals. The majority of successful techniques is using nonsmooth and convex functionals like the total variation and generalizations thereof or 1\ell_1-norms of coefficients arising from scalar products with some frame system. The efficient solution of such variational problems in imaging demands for appropriate algorithms. Taking into account the specific structure as a sum of two very different terms to be minimized, splitting algorithms are a quite canonical choice. Consequently this field has revived the interest in techniques like operator splittings or augmented Lagrangians. Here we shall provide an overview of methods currently developed and recent results as well as some computational studies providing a comparison of different methods and also illustrating their success in applications.Comment: 60 pages, 33 figure

    First-order Convex Optimization Methods for Signal and Image Processing

    Get PDF
    In this thesis we investigate the use of first-order convex optimization methods applied to problems in signal and image processing. First we make a general introduction to convex optimization, first-order methods and their iteration com-plexity. Then we look at different techniques, which can be used with first-order methods such as smoothing, Lagrange multipliers and proximal gradient meth-ods. We continue by presenting different applications of convex optimization and notable convex formulations with an emphasis on inverse problems and sparse signal processing. We also describe the multiple-description problem. We finally present the contributions of the thesis. The remaining parts of the thesis consist of five research papers. The first paper addresses non-smooth first-order convex optimization and the trade-off between accuracy and smoothness of the approximating smooth function. The second and third papers concern discrete linear inverse problems and reliable numerical reconstruction software. The last two papers present a convex opti-mization formulation of the multiple-description problem and a method to solve it in the case of large-scale instances. i i

    Efficient Model-Based Reconstruction for Dynamic MRI

    Full text link
    Dynamic magnetic resonance imaging (MRI) has important clinical and neuro- science applications (e.g., cardiac disease diagnosis, neurological behavior studies). It captures an object in motion by acquiring data across time, then reconstructing a sequence of images from them. This dissertation considers efficient dynamic MRI reconstruction using handcrafted models, to achieve fast imaging with high spatial and temporal resolution. Our modeling framework considers data acquisition process, image properties, and artifact correction. The reconstruction model expressed as a large-scale inverse problem requires optimization algorithms to solve, and we consider efficient implementations that make use of underlying problem structures. In the context of dynamic MRI reconstruction, we investigate efficient updates in two frameworks of algorithms for solving a nonsmooth composite convex optimization problem for the low-rank plus sparse (L+S) model. In the proximal gradient framework, current algorithms for the L+S model involve the classical iterative soft thresholding algorithm (ISTA); we consider two accelerated alternatives, one based on the fast iterative shrinkage-thresholding algorithm (FISTA), and the other with the recent proximal optimized gradient method (POGM). In the augmented Lagrangian (AL) framework, we propose an efficient variable splitting scheme based on the form of the data acquisition operator, leading to simpler computation than the conjugate gradient (CG) approach required by existing AL methods. Numerical results suggest faster convergence of our efficient implementations in both frameworks, with POGM providing the fastest convergence overall and the practical benefit of being free of algorithm tuning parameters. In the context of magnetic field inhomogeneity correction, we present an efficient algorithm for a regularized field inhomogeneity estimation problem. Most existing minimization techniques are computationally or memory intensive for 3D datasets, and are designed for single-coil MRI. We consider 3D MRI with optional consideration of coil sensitivity and a generalized expression that addresses both multi-echo field map estimation and water-fat imaging. Our efficient algorithm uses a preconditioned nonlinear conjugate gradient method based on an incomplete Cholesky factorization of the Hessian of the cost function, along with a monotonic line search. Numerical experiments show the computational advantage of the proposed algorithm over state- of-the-art methods with similar memory requirements. In the context of task-based functional MRI (fMRI) reconstruction, we introduce a space-time model that represents an fMRI timeseries as a sum of task-correlated signal and non-task background. Our model consists of a spatiotemporal decomposition based on assumptions of the activation waveform shape, with spatial and temporal smoothness regularization on the magnitude and phase of the timeseries. Compared with two contemporary task fMRI decomposition models, our proposed model yields better timeseries and activation maps on simulated and human subject fMRI datasets with multiple tasks. The above examples are part of a larger framework for model-based dynamic MRI reconstruction. This dissertation concludes by presenting a general framework with flexibility on model assumptions and artifact compensation options (e.g., field inhomogeneity, head motion), and proposing future work ideas on both the framework and its connection to data acquisition.PHDApplied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168081/1/yilinlin_1.pd

    Nonconvex Optimization Algorithms for Structured Matrix Estimation in Large-Scale Data Applications

    Get PDF
    Το πρόβλημα της εκτίμησης δομημένου πίνακα ανήκει στην κατηγορία των προβλημάτων εύρεσης αναπαραστάσεων χαμηλής διάστασης (low-dimensional embeddings) σε δεδομένα υψηλής διάστασης. Στις μέρες μας συναντάται σε μια πληθώρα εφαρμογών που σχετίζονται με τις ερευνητικές περιοχές της επεξεργασίας σήματος και της μηχανικής μάθησης. Στην παρούσα διατριβή προτείνονται νέοι μαθηματικοί φορμαλισμοί σε τρία διαφορετικά προβλήματα εκτίμησης δομημένων πινάκων από δεδομένα μεγάλης κλίμακας. Πιο συγκεκριμένα, μελετώνται τα ερευνητικά προβλήματα α) της εκτίμησης πίνακα που είναι ταυτόχρονα αραιός, χαμηλού βαθμού και μη-αρνητικός, β) της παραγοντοποίησης πίνακα χαμηλού βαθμού, και γ) της ακολουθιακής (online) εκτίμησης πίνακα υποχώρου (subspace matrix) χαμηλού βαθμού από ελλιπή δεδομένα. Για όλα τα προβλήματα αυτά προτείνονται καινoτόμοι και αποδοτικοί αλγόριθμοι βελτιστοποίησης (optimization algorithms). Βασική υπόθεση που υιοθετείται σε κάθε περίπτωση είναι πως τα δεδομένα έχουν παραχθεί με βάση ένα γραμμικό μοντέλο. Το σύνολο των προσεγγίσεων που ακολουθούνται χαρακτηρίζονται από μη-κυρτότητα. Όπως γίνεται φανερό στην παρούσα διατριβή, η ιδιότητα αυτή, παρά τις δυσκολίες που εισάγει στην θεωρητική τεκμηρίωση των προτεινόμενων μεθόδων (σε αντίθεση με τις κυρτές προσεγγίσεις στις οποίες η θεωρητική ανάλυση είναι σχετικά ευκολότερη), οδηγεί σε σημαντικά οφέλη όσον αφορά την απόδοσή τους σε πλήθος πραγματικών εφαρμογών. Για την εκτίμηση πίνακα που είναι ταυτόχρονα αραιός, χαμηλού βαθμού και μη-αρνητικός, προτείνονται στην παρούσα διατριβή τρεις νέοι αλγόριθμοι, από τους οποίους οι δύο πρώτοι ελαχιστοποιούν μια κοινή συνάρτηση κόστους και ο τρίτος μια ελαφρώς διαφορετική συνάρτηση κόστους. Κοινό χαρακτηριστικό και των δύο αυτών συναρτήσεων είναι ότι κατά βάση αποτελούνται από έναν όρο προσαρμογής στα δεδομένα και δύο όρους κανονικοποίησης, οι οποίοι χρησιμοποιούνται για την επιβολή αραιότητας και χαμηλού βαθμού, αντίστοιχα. Στην πρώτη περίπτωση αυτό επιτυγχάνεται με την αξιοποίηση του αθροίσματος της επανασταθμισμένης l1 νόρμας (reweighted l1 norm) και της επανασταθμισμένης πυρηνικής νόρμας (reweighted nuclear norm), οι οποίες ευθύνονται για το μη- κυρτό χαρακτήρα της προκύπτουσας συνάρτησης κόστους. Από τους δύο προτεινόμενους αλγορίθμους που ελαχιστοποιούν τη συνάρτηση αυτή, ο ένας ακολουθεί τη μέθοδο καθόδου σταδιακής εγγύτητας και ο άλλος βασίζεται στην πιο απαιτητική υπολογιστικά μέθοδο ADMM. Η δεύτερη συνάρτηση κόστους διαφοροποιείται σε σχέση με την πρώτη καθώς χρησιμοποιεί μια προσέγγιση παραγοντοποίησης για τη μοντελοποίηση του χαμηλού βαθμού του δομημένου πίνακα. Επιπλέον, λόγω της μη εκ των προτέρων γνώσης του πραγματικού βαθμού, ενσωματώνει έναν όρο επιβολής χαμηλού βαθμού, μέσω της μη- κυρτής έκφρασης που έχει προταθεί ως ένα άνω αυστηρό φράγμα της (κυρτής) πυρηνικής νόρμας (σ.σ. στο εξής θα αναφέρεται ως εναλλακτική μορφή της πυρηνικής νόρμας). Και στην περίπτωση αυτή, το πρόβλημα που προκύπτει είναι μη-κυρτό λόγω του φορμαλισμού του μέσω της παραγοντοποίησης πίνακα, ενώ η βελτιστοποίηση πραγματοποιείται εφαρμόζοντας μια υπολογιστικά αποδοτική μέθοδο καθόδου συνιστωσών ανά μπλοκ (block coordinate descent). Tο σύνολο των προτεινόμενων σχημάτων χρησιμοποιείται για τη μοντελοποίηση, με καινοτόμο τρόπο, του προβλήματος φασματικού διαχωρισμού υπερφασματικών εικόνων (ΥΦΕ). Όπως εξηγείται αναλυτικά, τόσο η αραιότητα όσο και ο χαμηλός βαθμός παρέχουν πολύτιμες ερμηνείες ορισμένων φυσικών χαρακτηριστικών των ΥΦΕ, όπως π.χ. η χωρική συσχέτιση. Πιο συγκεκριμένα, η αραιότητα και ο χαμηλός βαθμός μπορούν να υιοθετηθούν ως δομές στον πίνακα αφθονίας (abundance matrix - ο πίνακας που περιέχει τα ποσοστά παρουσίας των υλικών στην περιοχή που απεικονίζει κάθε εικονοστοιχείο). Τα σημαντικά πλεονεκτήματα που προσφέρουν οι προτεινόμενες τεχνικές, σε σχέση με ανταγωνιστικούς αλγορίθμους, αναδεικνύονται σε ένα πλήθος διαφορετικών πειραμάτων που πραγματοποιούνται τόσο σε συνθετικά όσο και σε αληθινά υπερφασματικά δεδομένα. Στο πλαίσιο της παραγοντοποίησης πίνακα χαμηλού βαθμού (low-rank matrix factorization) περιγράφονται στη διατριβή τέσσερις νέοι αλγόριθμοι, ο καθένας εκ των οποίων έχει σχεδιαστεί για μια διαφορετική έκφανση του συγκεκριμένου προβλήματος. Όλα τα προτεινόμενα σχήματα έχουν ένα κοινό χαρακτηριστικό: επιβάλλουν χαμηλό βαθμό στους πίνακες-παράγοντες καθώς και στο γινόμενό τους με την εισαγωγή ενός νέου όρου κανονικοποίησης. Ο όρος αυτός προκύπτει ως μια γενίκευση της εναλλακτικής έκφρασης της πυρηνικής νόρμας με τη μετατροπή της σε σταθμισμένη μορφή. Αξίζει να επισημανθεί πως με κατάλληλη επιλογή των πινάκων στάθμισης καταλήγουμε σε μια ειδική έκφραση της συγκεκριμένης νόρμας η οποία ανάγει την διαδικασία επιβολής χαμηλού βαθμού σε αυτή της από κοινού επιβολής αραιότητας στις στήλες των δύο πινάκων. Όπως αναδεικνύεται αναλυτικά, η ιδιότητα αυτή είναι πολύ χρήσιμη ιδιαιτέρως σε εφαρμογές διαχείρισης δεδομένων μεγάλης κλίμακας. Στα πλαίσια αυτά μελετώνται τρία πολύ σημαντικά προβλήματα στο πεδίο της μηχανικής μάθησης και συγκεκριμένα αυτά της αποθορυβοποίησης σήματος (denoising), πλήρωσης πίνακα (matrix completion) και παραγοντοποίησης μη-αρνητικού πίνακα (nonnegative matrix factorization). Χρησιμοποιώντας τη μέθοδο ελαχιστοποίησης άνω φραγμάτων συναρτήσεων διαδοχικών μπλοκ (block successive upper bound minimization) αναπτύσσονται τρεις νέοι επαναληπτικά σταθμισμένοι αλγόριθμοι τύπου Newton, οι οποίοι σχεδιάζονται κατάλληλα, λαμβάνοντας υπόψη τα ιδιαίτερα χαρακτηριστικά του εκάστοτε προβλήματος. Τέλος, παρουσιάζεται αλγόριθμος παραγοντοποίησης πίνακα ο οποίος έχει σχεδιαστεί πάνω στην προαναφερθείσα ιδέα επιβολής χαμηλού βαθμού, υποθέτοντας παράλληλα αραιότητα στον ένα πίνακα-παράγοντα. Η επαλήθευση της αποδοτικότητας όλων των αλγορίθμων που εισάγονται γίνεται με την εφαρμογή τους σε εκτεταμένα συνθετικά πειράματα, όπως επίσης και σε εφαρμογές πραγματικών δεδομένων μεγάλης κλίμακας π.χ. αποθορυβοποίηση ΥΦΕ, πλήρωση πινάκων από συστήματα συστάσεων (recommender systems) ταινιών, διαχωρισμός μουσικού σήματος και τέλος μη-επιβλεπόμενος φασματικός διαχωρισμός. Το τελευταίο πρόβλημα το οποίο διαπραγματεύεται η παρούσα διατριβή είναι αυτό της ακολουθιακής εκμάθησης υποχώρου χαμηλού βαθμού και της πλήρωσης πίνακα. Το πρόβλημα αυτό εδράζεται σε ένα διαφορετικό πλαίσιο μάθησης, την επονομαζόμενη ακολουθιακή μάθηση, η οποία αποτελεί μια πολύτιμη προσέγγιση σε εφαρμογές δεδομένων μεγάλης κλίμακας, αλλά και σε εφαρμογές που λαμβάνουν χώρα σε χρονικά μεταβαλλόμενα περιβάλλοντα. Στην παρούσα διατριβή προτείνονται δύο διαφορετικοί αλγόριθμοι, ένας μπεϋζιανός και ένας ντετερμινιστικός. Ο πρώτος αλγόριθμος προκύπτει από την εφαρμογή μιας καινοτόμου ακολουθιακής μεθόδου συμπερασμού βασισμένου σε μεταβολές. Αυτή η μέθοδος χρησιμοποιείται για την πραγματοποίηση προσεγγιστικού συμπερασμού στο προτεινόμενο ιεραρχικό μπεϋζιανό μοντέλο. Αξίζει να σημειωθεί πως το μοντέλο αυτό έχει σχεδιαστεί με κατάλληλο τρόπο έτσι ώστε να ενσωματώνει, σε πιθανοτικό πλαίσιο, την ίδια ιδέα επιβολής χαμηλού βαθμού που προτείνεται για το πρόβλημα παραγοντοποίησης πίνακα χαμηλού βαθμού, δηλαδή επιβάλλοντας από-κοινού αραιότητα στους πίνακες-παράγοντες. Ωστόσο, ακολουθώντας την πιθανοτική προσέγγιση, αυτό πραγματοποιείται επιβάλλοντας πολύ-επίπεδες a priori κατανομές Laplace στις στήλες τους. Ο αλγόριθμος που προκύπτει είναι πλήρως αυτοματοποιημένος, μιας και δεν απαιτεί τη ρύθμιση κάποιας παραμέτρου κανονικοποίησης. Ο δεύτερος αλγόριθμος προκύπτει από την ελαχιστοποίηση μιας κατάλληλα διαμορφωμένης συνάρτησης κόστους. Και στην περίπτωση αυτή, χρησιμοποιείται η προαναφερθείσα ιδέα επιβολής χαμηλού βαθμού (κατάλληλα τροποποιημένη έτσι ώστε να μπορεί να εφαρμοστεί στο ακολουθιακό πλαίσιο μάθησης). Ενδιαφέρον παρουσιάζει το γεγονός πως ο τελευταίος αλγόριθμος μπορεί να θεωρηθεί ως μια ντετερμινιστική εκδοχή του προαναφερθέντος πιθανοτικού αλγορίθμου. Τέλος, σημαντικό χαρακτηριστικό και των δύο αλγορίθμων είναι ότι δεν είναι απαραίτητη η εκ των προτέρων γνώση του βαθμού του πίνακα υποχώρου. Τα πλεονεκτήματα των προτεινόμενων προσεγγίσεων παρουσιάζονται σε ένα μεγάλο εύρος πειραμάτων που πραγματοποιήθηκαν σε συνθετικά δεδομένα, στο πρόβλημα της ακολουθιακής πλήρωσης ΥΦΕ και στην εκμάθηση ιδιο-προσώπων κάνοντας χρήση πραγματικών δεδομένων.Structured matrix estimation belongs to the family of learning tasks whose main goal is to reveal low-dimensional embeddings of high-dimensional data. Nowadays, this task appears in various forms in a plethora of signal processing and machine learning applications. In the present thesis, novel mathematical formulations for three different instances of structured matrix estimation are proposed. Concretely, the problems of a) simultaneously sparse, low-rank and nonnegative matrix estimation, b) low-rank matrix factorization and c) online low-rank subspace learning and matrix completion, are addressed and analyzed. In all cases, it is assumed that data are generated by a linear process, i.e., we deal with linear measurements. A suite of novel and efficient {\it optimization algorithms} amenable to handling {\it large-scale data} are presented. A key common feature of all the introduced schemes is {\it nonconvexity}. It should be noted that albeit nonconvexity complicates the derivation of theoretical guarantees (contrary to convex relevant approaches, which - in most cases - can be theoretically analyzed relatively easily), significant gains in terms of the estimation performance of the emerging algorithms have been recently witnessed in several real practical situations. Let us first focus on simultaneously sparse, low-rank and nonnegative matrix estimation from linear measurements. In the thesis this problem is resolved by three different optimization algorithms, which address two different and novel formulations of the relevant task. All the proposed schemes are suitably devised for minimizing a cost function consisting of a least-squares data fitting term and two regularization terms. The latter are utilized for promoting sparsity and low-rankness. The novelty of the first formulation lies in the use, for the first time in the literature, of the sum of the reweighted 1\ell_1 and the reweighted nuclear norms. The merits of reweighted 1\ell_1 and nuclear norms have been exposed in numerous sparse and low-rank matrix recovery problems. As is known, albeit these two norms induce nonconvexity in the resulting optimization problems, they provide a better approximation of the 0\ell_0 norm and the rank function, respectively, as compared to relevant convex regularizers. Herein, we aspire to benefit from the use of the combination of these two norms. The first algorithm is an incremental proximal minimization scheme, while the second one is an ADMM solver. The third algorithm's main goal is to further reduce the computational complexity. Towards this end, it deviates from the other two in the use of a matrix factorization based approach for modelling low-rankness. Since the rank of the sought matrix is generally unknown, a low-rank imposing term, i.e., the variational form of the nuclear norm, which is a function of the matrix factors, is utilized. In this case, the optimization process takes place via a block coordinate descent type scheme. The proposed formulations are utilized for modelling in a pioneering way a very important problem in hyperspectral image processing, that of hyperspectral image unmixing. It is shown that both sparsity and low-rank offer meaningful interpretations of inherent natural characteristics of hyperspectral images. More specifically, both sparsity and low-rankness are reasonable hypotheses that can be made for the so-called {\it abundance} matrix, i.e., the nonnegative matrix containing the fractions of presence of the different materials, called {\it endmembers}, at the region depicted by each pixel. The merits of the proposed algorithms over other state-of-the-art hyperspectral unmixing algorithms are corroborated in a wealth of simulated and real hyperspectral imaging data experiments. In the framework of low-rank matrix factorization (LRMF) four novel optimization algorithms are presented, each modelling a different instance of it. All the proposed schemes share a common thread: they impose low-rank on both matrix factors and the sought matrix by a newly introduced regularization term. This term can be considered as a generalized weighted version of the variational form of the nuclear norm. Notably, by appropriately selecting the weight matrix, low-rank enforcement amounts to imposing joint column sparsity on both matrix factors. This property is actually proven to be quite important in applications dealing with large-scale data, since it leads to a significant decrease of the induced computational complexity. Along these lines, three well-known machine learning tasks, namely, denoising, matrix completion and low-rank nonnegative matrix factorization (NMF), are redefined according to the new low-rank regularization approach. Then, following the block successive upper bound minimization framework, alternating iteratively reweighted least-squares, Newton-type algorithms are devised accounting for the particular characteristics of the problem that each time is addressed. Lastly, an additional low-rank and sparse NMF algorithm is proposed, which hinges upon the same low-rank promoting idea mentioned above, while also accounting for sparsity on one of the matrix factors. All the derived algorithms are tested on extensive simulated data experiments and real large-scale data applications such as hyperspectral image denoising, matrix completion for recommender systems, music signal decomposition and unsupervised hyperspectral image unmixing with unknown number of endmembers. The last problem that this thesis touches upon is online low-rank subspace learning and matrix completion. This task follows a different learning model, i.e., online learning, which offers a valuable processing framework when one deals with large-scale streaming data possibly under time-varying conditions. In the thesis, two different online algorithms are put forth. The first one stems from a newly developed online variational Bayes scheme. This is applied for performing approximate inference based on a carefully designed novel multi-hierarchical Bayesian model. Notably, the adopted model encompasses similar low-rank promoting ideas to those mentioned for LRMF. That is, low-rank is imposed via promoting jointly column sparsity on the columns of the matrix factors. However, following the Bayesian rationale, this now takes place by assigning Laplace-type marginal priors on the matrix factors. Going one step further, additional sparsity is independently modelled on the subspace matrix thus imposing multiple structures on the same matrix. The resulting algorithm is fully automated, i.e., it does not demand fine-tuning of any parameters. The second algorithm follows a cost function minimization based strategy. Again, the same low-rank promoting idea introduced for LRMF is incorporated in this problem via the use of a - modified to the online processing scenario - low-rank regularization term. Interestingly, the resulting optimization scheme can be considered as the deterministic analogue of the Bayesian one. Both the proposed algorithms present a favorable feature, i.e., they are competent to learn subspaces without requiring the a priori knowledge of their true rank. Their effectiveness is showcased in extensive simulated data experiments and in online hyperspectral image completion and eigenface learning using real data

    Rigorous optimization recipes for sparse and low rank inverse problems with applications in data sciences

    Get PDF
    Many natural and man-made signals can be described as having a few degrees of freedom relative to their size due to natural parameterizations or constraints; examples include bandlimited signals, collections of signals observed from multiple viewpoints in a network-of-sensors, and per-flow traffic measurements of the Internet. Low-dimensional models (LDMs) mathematically capture the inherent structure of such signals via combinatorial and geometric data models, such as sparsity, unions-of-subspaces, low-rankness, manifolds, and mixtures of factor analyzers, and are emerging to revolutionize the way we treat inverse problems (e.g., signal recovery, parameter estimation, or structure learning) from dimensionality-reduced or incomplete data. Assuming our problem resides in a LDM space, in this thesis we investigate how to integrate such models in convex and non-convex optimization algorithms for significant gains in computational complexity. We mostly focus on two LDMs: (i)(i) sparsity and (ii)(ii) low-rankness. We study trade-offs and their implications to develop efficient and provable optimization algorithms, and--more importantly--to exploit convex and combinatorial optimization that can enable cross-pollination of decades of research in both

    Spatial priors for tomographic reconstructions from limited data

    Get PDF
    Tomografie is het reconstrueren van het inwendige van een object a.d.h.v externe metingen, b.v. beelden verkregen met X-stralen of microgolven. Deze thesis bekijkt de specifieke aspecten van microgolftomografie en magnetische resonantie beeldvorming (Magnetic Resonance Imaging – MRI); beide technieken zijn onschadelijk voor de mens. Terwijl het gebruik van MRI wijdverspreid is voor veel klinische toepassingen, is microgolftomografie nog niet in klinisch gebruik ondanks zijn potentiële voordelen. Door de lage kost en draagbaarheid van de toestellen is het een waardevolle aanvulling aan het assortiment
    corecore