114 research outputs found

    Performance Evaluation for the Sustainable Supply Chain Management

    Get PDF
    Supply chain SC activities transform natural resources, raw materials, and components into various finished products that are delivered to end customers. A high efficient SC would bring great benefits to an enterprise such as integrated resources, reduced logistics costs, improved logistics efficiency, and high quality of overall level of services. In contrast, an inefficient SC will bring additional transaction costs, information management costs, and resource waste, reduce the production capacity of all enterprises on the chain, and unsatisfactory customer relationships. So the evaluation of a SC is important for an enterprise to survive in a competitive market in a globalized business environment. Therefore, it is important to research the various methods, performance indicator systems, and technology for evaluating, monitoring, predicting, and optimizing the performance of a SC. A typical procedure of the performance evaluation (PE) of a SC is to use the established evaluation performance indicators, employ an analytical method, follow a given procedure, to carry out quantitatively or qualitatively comparative analysis to provide the objective and accurate evaluation of a SC performance in a selected operation period. Various research works have been carried out in proposing the performance indicator systems and methods for SC performance evaluations. But there are no widely accepted indicator systems that can be applied in practical SC performance evaluations due to the fact that the indicators in different systems have been defined without a common understanding of the meanings and the relationships between them, and they are nonlinear and very complicated

    Forecasting tools and probabilistic scheduling approach incorporatins renewables uncertainty for the insular power systems industry

    Get PDF
    Nowadays, the paradigm shift in the electricity sector and the advent of the smart grid, along with the growing impositions of a gradual reduction of greenhouse gas emissions, pose numerous challenges related with the sustainable management of power systems. The insular power systems industry is heavily dependent on imported energy, namely fossil fuels, and also on seasonal tourism behavior, which strongly influences the local economy. In comparison with the mainland power system, the behavior of insular power systems is highly influenced by the stochastic nature of the renewable energy sources available. The insular electricity grid is particularly sensitive to power quality parameters, mainly to frequency and voltage deviations, and a greater integration of endogenous renewables potential in the power system may affect the overall reliability and security of energy supply, so singular care should be placed in all forecasting and system operation procedures. The goals of this thesis are focused on the development of new decision support tools, for the reliable forecasting of market prices and wind power, for the optimal economic dispatch and unit commitment considering renewable generation, and for the smart control of energy storage systems. The new methodologies developed are tested in real case studies, demonstrating their computational proficiency comparatively to the current state-of-the-art
    • …
    corecore