20 research outputs found

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Resource allocation and congestion control strategies for networked unmanned systems

    Get PDF
    It is generally agreed that communication is a critical technological factor in designing networked unmanned systems (NUS) that consist of a large number of heterogeneous assets/nodes that may be configured in ad-hoc fashion and that incorporate intricate architectures. In order to successfully carry out the NUS missions, communication among assets need to be accomplished efficiently. In contrast with conventional networks, NUSs have specific features that may render communication more complex. The main distinct characteristics of NUS are as follows: (a) heterogeneity of assets in terms of resources, (b) multiple topologies that can be fully-connected, (c) real-time requirements imposed by delivery timeliness of messages under evolving and uncertain environments, (d) unknown and random time-delays that may degrade the closed-loop dynamics performance, (e) bandwidth constraints reflecting differences in assets behavior and dynamics, and (f) protocol limitations for complying with the wireless features of these networks. The NUS system consists of clusters each having three nodes, namely, a sensor, a decision-maker, and an actuator. Inspired by networked control systems (NCS), we introduced a generic framework for NUSs. Using the fluid flow model (FFM), the overall dynamical model of our network cluster is derived as a time-delay dependent system. The following three main issues are investigated in this thesis, bandwidth allocation, an integrated bandwidth allocation and flow rate control, and congestion control. To demonstrate the difficulty of addressing the bandwidth allocation control problem, a standard PID is implemented for our network cluster. It is shown that in presence of feedback loops and time-delays in the network, this controller induces flow oscillations and consequently, in the worst-case scenario, network instability. To address this problem, nonlinear control strategies are proposed instead. These strategies are evaluated subject to presence of unknown delays and measurable/estimated input traffic. For different network configurations, the error dynamics of the entire controlled cluster is derived and sufficient stability conditions are obtained. In addition, our proposed bandwidth allocation control strategy is evaluated when the NUS assets are assumed to be mobile. The bandwidth allocation problem is often studied in an integrated fashion with the flow rate control and the connection admission control (CAC). In fact, due to importance of interaction of various components, design of the entire control system is often more promising than optimization of individual components. In this thesis, several robust integrated bandwidth allocation and flow rate control strategies are proposed. The third issue that is investigated in this thesis is the congestion control for differentiated-services (DiffServ) networks. In our proposed congestion control strategies, the buffer queue length is used as a feedback information to control locally the queue length of each buffer by acting on the bandwidth and simultaneously a feedback signaling notifies the ordinary sources regarding the allowed maximum rate. Using sliding mode generalized variable structure control techniques (SM-GVSC), two congestion control approaches are proposed, namely, the non degenerate and degenerate GVS control approaches. By adopting decentralized end-to-end, semi-decentralized end-to-end, and distributed hop-by-hop control approaches, our proposed congestion control strategies are investigated for a DiffServ loopless mesh network (Internet) and a DiffServ fully-connected NUS. Contrary to the semi-decentralized end-to-end congestion control strategy, in the distributed hop-by-hop congestion control strategy, each output port controller communicates the maximum allowed flow rate only to its immediate upstream node(s) and/or source(s). This approach reduces the required amount of information in the flow control when Compared to other approaches in which the allowed flow rate is sent to all the upstream sources communicating through an output port

    Quality of Service Controlled Multimedia Transport Protocol

    Get PDF
    PhDThis research looks at the design of an open transport protocol that supports a range of services including multimedia over low data-rate networks. Low data-rate multimedia applications require a system that provides quality of service (QoS) assurance and flexibility. One promising field is the area of content-based coding. Content-based systems use an array of protocols to select the optimum set of coding algorithms. A content-based transport protocol integrates a content-based application to a transmission network. General transport protocols form a bottleneck in low data-rate multimedia communicationbsy limiting throughpuot r by not maintainingt iming requirementsT. his work presents an original model of a transport protocol that eliminates the bottleneck by introducing a flexible yet efficient algorithm that uses an open approach to flexibility and holistic architectureto promoteQ oS.T he flexibility andt ransparenccyo mesi n the form of a fixed syntaxt hat providesa seto f transportp rotocols emanticsT. he mediaQ oSi s maintained by defining a generic descriptor. Overall, the structure of the protocol is based on a single adaptablea lgorithm that supportsa pplication independencen, etwork independencea nd quality of service. The transportp rotocol was evaluatedth rougha set of assessmentos:f f-line; off-line for a specific application; and on-line for a specific application. Application contexts used MPEG-4 test material where the on-line assessmenuts eda modified MPEG-4 pl; yer. The performanceo f the QoSc ontrolledt ransportp rotocoli s often bettert hano thers chemews hen appropriateQ oS controlledm anagemenatl gorithmsa re selectedT. his is shownf irst for an off-line assessmenwt here the performancei s compared between the QoS controlled multiplexer,a n emulatedM PEG-4F lexMux multiplexers chemea, ndt he targetr equirements. The performanceis also shownt o be better in a real environmentw hen the QoS controlled multiplexeri s comparedw ith the real MPEG-4F lexMux scheme

    Third International Symposium on Space Mission Operations and Ground Data Systems, part 1

    Get PDF
    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The papers focus on improvements in the efficiency, effectiveness, productivity, and quality of data acquisition, ground systems, and mission operations. New technology, techniques, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments
    corecore