1,523 research outputs found

    Modules program structures and the structuring of operating systems

    Get PDF
    In this paper some views are presented on the way in which complex systems, such as Operating Systems and the programs to be interfaced with them can be constructed, and how such systems may become heavily library oriented. Although such systems have a dynamic nature, all interfacing within and among modules can be checked statically. It will be shown that the concepts presented are equally valid for single user systems, multi-programming systems and even distributed systems. The ideas have been spurred by the implementation of a modular version of Pascal and a supporting Operating System, currently nearing completion at Twente University of Technology, The Netherlands

    The NASA-UC-UH Eta-Earth Program: IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth

    Get PDF
    We report the discovery of a low-mass planet orbiting Gl 15 A based on radial velocities from the Eta-Earth Survey using HIRES at Keck Observatory. Gl 15 Ab is a planet with minimum mass Msini = 5.35 ±\pm 0.75 M⊕_\oplus, orbital period P = 11.4433 ±\pm 0.0016 days, and an orbit that is consistent with circular. We characterize the host star using a variety of techniques. Photometric observations at Fairborn Observatory show no evidence for rotational modulation of spots at the orbital period to a limit of ~0.1 mmag, thus supporting the existence of the planet. We detect a second RV signal with a period of 44 days that we attribute to rotational modulation of stellar surface features, as confirmed by optical photometry and the Ca II H & K activity indicator. Using infrared spectroscopy from Palomar-TripleSpec, we measure an M2 V spectral type and a sub-solar metallicity ([M/H] = -0.22, [Fe/H] = -0.32). We measure a stellar radius of 0.3863 ±\pm 0.0021 R⊙_\odot based on interferometry from CHARA.Comment: ApJ accepted, 11 pages, 8 figures, 3 table

    Constraints on Low-Mass WIMP Interactions on 19F from PICASSO

    Get PDF
    Recent results from the PICASSO dark matter search experiment at SNOLAB are reported. These results were obtained using a subset of 10 detectors with a total target mass of 0.72 kg of 19F and an exposure of 114 kgd. The low backgrounds in PICASSO allow recoil energy thresholds as low as 1.7 keV to be obtained which results in an increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below 10 GeV/c^2. No dark matter signal was found. Best exclusion limits in the spin dependent sector were obtained for WIMP masses of 20 GeV/c^2 with a cross section on protons of sigma_p^SD = 0.032 pb (90% C.L.). In the spin independent sector close to the low mass region of 7 GeV/c2 favoured by CoGeNT and DAMA/LIBRA, cross sections larger than sigma_p^SI = 1.41x10^-4 pb (90% C.L.) are excluded.Comment: 23 pages, 7 figures, to be published in Phys. Lett.

    Report from solar physics

    Get PDF
    A discussion of the nature of solar physics is followed by a brief review of recent advances in the field. These advances include: the first direct experimental confirmation of the central role played by thermonuclear processes in stars; the discovery that the 5-minute oscillations of the Sun are a global seismic phenomenon that can be used as a probe of the structure and dynamical behavior of the solar interior; the discovery that the solar magnetic field is subdivided into individual flux tubes with field strength exceeding 1000 gauss. Also covered was a science strategy for pure solar physics. Brief discussions are given of solar-terrestrial physics, solar/stellar relationships, and suggested space missions

    A 4-Planet System Orbiting the K0V Star HD 141399

    Get PDF
    We present precision radial velocity (RV) data sets from Keck-HIRES and from Lick Observatory's new Automated Planet Finder Telescope and Levy Spectrometer on Mt. Hamilton that reveal a multiple-planet system orbiting the nearby, slightly evolved, K-type star HD 141399. Our 91 observations over 10.5 years suggest the presence of four planets with orbital periods of 94.35, 202.08, 1070.35, and 3717.35 days and minimum masses of 0.46, 1.36, 1.22, and 0.69 Jupiter masses respectively. The orbital eccentricities of the three inner planets are small, and the phase curves are well sampled. The inner two planets lie just outside the 2:1 resonance, suggesting that the system may have experienced dissipative evolution during the protoplanetary disk phase. The fourth companion is a Jupiter-like planet with a Jupiter-like orbital period. Its orbital eccentricity is consistent with zero, but more data will be required for an accurate eccentricity determination.Comment: 11 pages, 13 figures, To appear in the Astrophysical Journa

    Quantitative spectroscopic analysis of and distance to SN1999em

    Full text link
    This work presents a detailed quantitative spectroscopic analysis of, and the determination of the distance to, the type II supernovae (SN) SN1999em with CMFGEN (Dessart & Hillier 2005a), based on spectrophotometric observations at eight dates up to 40 days after discovery. We use the same iron-group metal content for the ejecta, the same power-law density distribution (with exponent n~10), and a Hubble-velocity law at all times. We adopt a H/He/C/N/O abundance pattern compatible with CNO-cycle equilibrium values for a RSG/BSG progenitor, with C/O enhanced and N depleted at later times. Based on our synthetic fits to spectrophotometric observations of SN1999em, we obtain a distance of 11.5Mpc, similar to that of Baron et al. (2004) and the Cepheid distance to the galaxy host of 11.7Mpc (Leonard et al. 2003). Similarly, based on such models, the Expanding Photosphere Method (EPM) delivers a distance of 11.6Mpc, with negligible scatter between photometric bandpass sets; there is thus nothing wrong with the EPM as such. Previous determinations using the tabulated correction factors of Eastman et al. (1996) all led to 30-50% underestimates: we find that this is caused by 1) an underestimate of the correction factors compared to the only other study of the kind by Dessart & Hillier (2005b), 2) a neglect of the intrinsic >20% scatter of correction factors, and 3) the use of the EPM at late times when severe line blanketing makes the method inaccurate. The need of detailed model computations for reliable EPM distance estimates thus defeats the appeal and simplicity of the method. However, detailed fits to SN optical spectra, based on tailored models for individual SN observations, offers a promising approach to obtaining distances with 10-20% accuracy, either through the EPM or a la Baron et al. (2004).Comment: 20 pages, 13 figures, accepted for publication in A&

    Cosmic Ray Origin, Acceleration and Propagation

    Get PDF
    This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the XXVIth International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.Comment: To appear in the Summary-Rapporteur Volume of the 26th International Cosmic Ray Conference, ed. B. L. Dingus (AIP, New York, 2000). Latex, 16 pages, no figures (Minor correction to text

    Investigating the origin of cyclical wind variability in hot, massive stars - II. Hydrodynamical simulations of co-rotating interaction regions using realistic spot parameters for the O giant Îľ\xi Persei

    Full text link
    OB stars exhibit various types of spectral variability historically associated with wind structures, including the apparently ubiquitous discrete absorption components (DACs). These features have been proposed to be caused either by magnetic fields or non-radial pulsations. In this second paper of this series, we revisit the canonical phenomenological hydrodynamical modelling used to explain the formation of DACs by taking into account modern observations and more realistic theoretical predictions. Using constraints on putative bright spots located on the surface of the O giant Îľ\xi Persei derived from high precision space-based broadband optical photometry obtained with the Microvariability and Oscillations of STars (MOST) space telescope, we generate two-dimensional hydrodynamical simulations of co-rotating interaction regions in its wind. We then compute synthetic ultraviolet (UV) resonance line profiles using Sobolev Exact Integration and compare them with historical timeseries obtained by the International Ultraviolet Explorer (IUE) to evaluate if the observed behaviour of Îľ\xi Persei's DACs is reproduced. Testing three different models of spot size and strength, we find that the classical pattern of variability can be successfully reproduced for two of them: the model with the smallest spots yields absorption features that are incompatible with observations. Furthermore, we test the effect of the radial dependence of ionization levels on line driving, but cannot conclusively assess the importance of this factor. In conclusion, this study self-consistently links optical photometry and UV spectroscopy, paving the way to a better understanding of cyclical wind variability in massive stars in the context of the bright spot paradigm.Comment: 16 pages, 10 figures, accepted for publication by MNRA
    • …
    corecore