68,484 research outputs found

    Petri net modeling and performance analysis of can fieldbus

    Get PDF
    The CAN FB (Controller Area Network FieldBus) has been in existence for ten years. It supports automated manufacturing and process control environments to interconnect intelligent devices such as valves, sensors, and actuators. CAN FieldBus has a high bit rate and the ability to detect errors. It is immune to noise and resistant to shock, vibration, and heat. Two recently introduced mechanisms, Distributed Priority Queue (DPQ) and Priority Promotion (PP) enable CAN FieldBus networks to share out the system bandwidth and grant ail upper bound on the transmission times so as to meet the requirements in real-time communications. Modeling and analysis of such networks are an important research area for their wide applications in manufacturing automation. This thesis presents a Petri net methodology which models and analyzes CAN FieldBus access protocol. A Reachability Graph of the Petri net model is -utilized to study the behavioral properties of the protocol. A timed Petri net simulator is used to evaluate the performance of the protocol. Performance measures include the completion time for successful events and operations. Operational parameters investigated using the Petri Net model are FieldBus speed, the length of each frame, and the number of frames in a message

    Design and Evaluation of Processes for Fuel Fabrication

    Full text link
    One of the primary concerns in selecting a fuel matrix for actinide-bearing fuels, such as those for transmutation systems, is fuel fabrication. Fuel fabrication technologies for the fabrication and re-fabrication processes must meet several technical considerations, such as minimizing secondary radioactive waste streams, economic viability, reasonable capital outlay, and must be easy to maintain over the transmuter core life cycle. Additionally, the fuel type chosen must be easily manufactured in a remote environment. The volatile behavior of americium during thermal processing further complicates these goals. Currently, the national program is investigating a number of candidate fuel matrices: metallic, ceramic, dispersion, nitride, and carbide/ TRISO, just to name the leading candidates. This project examines the manufacturing processes currently under consideration for these fuel types, as currently envisioned by the Argonne National Laboratory-West manufacturing group. Each fuel type requires developing a distinct remote fabrication process. Conceptual fuel fabrication processes for the fuel types will be developed in conjunction with ANL. This knowledge allows scientists to make an informed selection regarding which candidate fuels require further development and irradiation testing for a transmutation system. The UNLV research team achieved the following tasks during the first year of research: • Survey of candidate transmutation fuels, coupled with a detailed evaluation of the identified fuel manufacturing processes following criteria established by the national fuel development program; • Conceptual computer modeling of one manufacturing process allowing the identification of areas where automated processes are crucial to maintain the required throughput rates; • Mr. Richard Silva, M.S. student, developed an initial work cell simulation with two robots. He will continue to develop detailed 3-D process simulation models for his thesis project; and, • Mr. Jae-Kyu Lee, a Ph.D. student, developed a conceptual methodology for vision-based hot cell supervision and control

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented

    Numerical Simulation of AFP Nip Point Temperature Prediction for Complex Geometries

    Get PDF
    Material placement at the ideal nip point temperature over complex surfaces with uniformity across the width of the compaction rollers results in optimized part properties for Automated Fiber Placement (AFP) processes. However, current AFP systems utilize heat control models and methodologies, based on multiple process parameters such as feed-rate and orientation, that are mostly open-loop. Here, infrared (IR) heater input is calibrated as a function of process parameters during machine qualification. This work presents a numerical simulation to predict arrayed-infrared (AIR) emitter radiation onto a substrate that includes view factor implementation, IR radiative heat flow calculation, energy rate balance, and a transient heat transfer model. The purpose of this numerical model is to predict nip point temperature on complex surfaces, serving as a baseline for a new arrayed-infrared (AIR) thermoset heater to improve AFP process control. It is anticipated that this simulation will accurately control the temperature for high-speed AFP layup of complex geometries. An anticipated result of an AIR heater system is that material calibration and testing will be reduced as temperature is instantaneously monitored and controlled. Therefore, temperature across the roller width will be uniform during placement of complex parts, independent of their geometry

    ARMD Workshop on Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation

    Get PDF
    This report documents the goals, organization and outcomes of the NASA Aeronautics Research Mission Directorates (ARMD) Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation Workshop. The workshop began with a series of plenary presentations by leaders in the field of structures and materials, followed by concurrent symposia focused on forecasting the future of various technologies related to rapid manufacturing of metallic materials and polymeric matrix composites, referred to herein as composites. Shortly after the workshop, questionnaires were sent to key workshop participants from the aerospace industry with requests to rank the importance of a series of potential investment areas identified during the workshop. Outcomes from the workshop and subsequent questionnaires are being used as guidance for NASA investments in this important technology area

    Product Focused Freeform Fabrication Education

    Get PDF
    Presented in this paper is our experience of teaching freeform fabrication to students at the Missouri University of Science and Technology, and to high school students and teachers. The emphasis of the curriculum is exposing students to rapid product development technologies with the goal of creating awareness to emerging career opportunities in CAD/CAM. Starting from solid modeling, principles of freeform fabrication, to applications of rapid prototyping and manufacturing in industry sponsored product development projects, students can learn in-depth freeform fabrication technologies. Interactive course content with hands-on experience for product development is the key towards the success of the program.Mechanical Engineerin
    • …
    corecore