2,382 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Geospatial information infrastructures to address spatial needs in health: Collaboration, challenges and opportunities

    Get PDF
    Most health-related issues such as public health outbreaks and epidemiological threats are better understood from a spatial–temporal perspective and, clearly demand related geospatial datasets and services so that decision makers may jointly make informed decisions and coordinate response plans. Although current health applications support a kind of geospatial features, these are still disconnected from the wide range of geospatial services and datasets that geospatial information infrastructures may bring into health. In this paper we are questioning the hypothesis whether geospatial information infrastructures, in terms of standards-based geospatial services, technologies, and data models as operational assets already in place, can be exploited by health applications for which the geospatial dimension is of great importance. This may be certainly addressed by defining better collaboration strategies to uncover and promote geospatial assets to the health community. We discuss the value of collaboration, as well as the opportunities that geographic information infrastructures offer to address geospatial challenges in health applications

    Leveraging Container Technologies in a GIScience Project: A Perspective from Open Reproducible Research

    Get PDF
    Scientific reproducibility is essential for the advancement of science. It allows the results of previous studies to be reproduced, validates their conclusions and develops new contributions based on previous research. Nowadays, more and more authors consider that the ultimate product of academic research is the scientific manuscript, together with all the necessary elements (i.e., code and data) so that others can reproduce the results. However, there are numerous difficulties for some studies to be reproduced easily (i.e., biased results, the pressure to publish, and proprietary data). In this context, we explain our experience in an attempt to improve the reproducibility of a GIScience project. According to our project needs, we evaluated a list of practices, standards and tools that may facilitate open and reproducible research in the geospatial domain, contextualising them on Peng’s reproducibility spectrum. Among these resources, we focused on containerisation technologies and performed a shallow review to reflect on the level of adoption of these technologies in combination with OSGeo software. Finally, containerisation technologies proved to enhance the reproducibility and we used UML diagrams to describe representative work-flows deployed in our GIScience project.This work has been funded by the Generalitat Valenciana through the “Subvenciones para la realización de proyectos de I+D+i desarrollados por grupos de investigación emergentes” programme (GV/2019/016) and by the Spanish Ministry of Economy and Competitiveness under the subprogrammes Challenges-Collaboration 2014 (RTC-2014-1863-8) and Challenges R+D+I 2016 (CSO2016-79420-R AEI/FEDER, EU). Sergio Trilles has been funded by the postdoctoral programme PINV2018 - Universitat Jaume I (POSDOC-B/2018/12) and stays programme PINV2018 - Universitat Jaume I (E/2019/031)

    The Future of Government: Lessons Learned from around the World

    Get PDF
    The report provides a summary of the discussions that have taken place within the framework of Forum activities on how the strategies, structures and practices of governments must change in the coming years, and how new networks and technologies can be leveraged to transform government capacity. It includes a series of policy briefs, which distils some of the most current and vital information for government modernization available, and concludes with case studies from around the world

    A survey of the European Open Science Cloud services for expanding the capacity and capabilities of multidisciplinary scientific applications

    Get PDF
    Open Science is a paradigm in which scientific data, procedures, tools and results are shared transparently and reused by society. The European Open Science Cloud (EOSC) initiative is an effort in Europe to provide an open, trusted, virtual and federated computing environment to execute scientific applications and store, share and reuse research data across borders and scientific disciplines. Additionally, scientific services are becoming increasingly data-intensive, not only in terms of computationally intensive tasks but also in terms of storage resources. To meet those resource demands, computing paradigms such as High-Performance Computing (HPC) and Cloud Computing are applied to e-science applications. However, adapting applications and services to these paradigms is a challenging task, commonly requiring a deep knowledge of the underlying technologies, which often constitutes a general barrier to its uptake by scientists. In this context, EOSC-Synergy, a collaborative project involving more than 20 institutions from eight European countries pooling their knowledge and experience to enhance EOSC’s capabilities and capacities, aims to bring EOSC closer to the scientific communities. This article provides a summary analysis of the adaptations made in the ten thematic services of EOSC-Synergy to embrace this paradigm. These services are grouped into four categories: Earth Observation, Environment, Biomedicine, and Astrophysics. The analysis will lead to the identification of commonalities, best practices and common requirements, regardless of the thematic area of the service. Experience gained from the thematic services can be transferred to new services for the adoption of the EOSC ecosystem framework. The article made several recommendations for the integration of thematic services in the EOSC ecosystem regarding Authentication and Authorization (federated regional or thematic solutions based on EduGAIN mainly), FAIR data and metadata preservation solutions (both at cataloguing and data preservation—such as EUDAT’s B2SHARE), cloud platform-agnostic resource management services (such as Infrastructure Manager) and workload management solutions.This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857647, EOSC-Synergy, European Open Science Cloud - Expanding Capacities by building Capabilities. Moreover, this work is partially funded by grant No 2015/24461-2, São Paulo Research Foundation (FAPESP). Francisco Brasileiro is a CNPq/Brazil researcher (grant 308027/2020-5).Peer Reviewed"Article signat per 20 autors/es: Amanda Calatrava, Hernán Asorey, Jan Astalos, Alberto Azevedo, Francesco Benincasa, Ignacio Blanquer, Martin Bobak, Francisco Brasileiro, Laia Codó, Laura del Cano, Borja Esteban, Meritxell Ferret, Josef Handl, Tobias Kerzenmacher, Valentin Kozlov, Aleš Křenek, Ricardo Martins, Manuel Pavesio, Antonio Juan Rubio-Montero, Juan Sánchez-Ferrero "Postprint (published version

    Emerging approaches for data-driven innovation in Europe: Sandbox experiments on the governance of data and technology

    Get PDF
    Europe’s digital transformation of the economy and society is one of the priorities of the current Commission and is framed by the European strategy for data. This strategy aims at creating a single market for data through the establishment of a common European data space, based in turn on domain-specific data spaces in strategic sectors such as environment, agriculture, industry, health and transportation. Acknowledging the key role that emerging technologies and innovative approaches for data sharing and use can play to make European data spaces a reality, this document presents a set of experiments that explore emerging technologies and tools for data-driven innovation, and also deepen in the socio-technical factors and forces that occur in data-driven innovation. Experimental results shed some light in terms of lessons learned and practical recommendations towards the establishment of European data spaces
    corecore