241 research outputs found

    Magneto-Rheological Actuators for Human-Safe Robots: Modeling, Control, and Implementation

    Get PDF
    In recent years, research on physical human-robot interaction has received considerable attention. Research on this subject has led to the study of new control and actuation mechanisms for robots in order to achieve intrinsic safety. Naturally, intrinsic safety is only achievable in kinematic structures that exhibit low output impedance. Existing solutions for reducing impedance are commonly obtained at the expense of reduced performance, or significant increase in mechanical complexity. Achieving high performance while guaranteeing safety seems to be a challenging goal that necessitates new actuation technologies in future generations of human-safe robots. In this study, a novel two degrees-of-freedom safe manipulator is presented. The manipulator uses magneto-rheological fluid-based actuators. Magneto-rheological actuators offer low inertia-to-torque and mass-to-torque ratios which support their applications in human-friendly actuation. As a key element in the design of the manipulator, bi-directional actuation is attained by antagonistically coupling MR actuators at the joints. Antagonistically coupled MR actuators at the joints allow using a single motor to drive multiple joints. The motor is located at the base of the manipulator in order to further reduce the overall weight of the robot. Due to the unique characteristic of MR actuators, intrinsically safe actuation is achieved without compromising high quality actuation. Despite these advantages, modeling and control of MR actuators present some challenges. The antagonistic configuration of MR actuators may result in limit cycles in some cases when the actuator operates in the position control loop. To study the possibility of limit cycles, describing function method is employed to obtain the conditions under which limit cycles may occur in the operation of the system. Moreover, a connection between the amplitude and the frequency of the potential limit cycles and the system parameters is established to provide an insight into the design of the actuator as well as the controller. MR actuators require magnetic fields to control their output torques. The application of magnetic field however introduces hysteresis in the behaviors of MR actuators. To this effect, an adaptive model is developed to estimate the hysteretic behavior of the actuator. The effectiveness of the model is evaluated by comparing its results with those obtained using the Preisach model. These results are then extended to an adaptive control scheme in order to compensate for the effect of hysteresis. In both modeling and control, stability of proposed schemes are evaluated using Lyapunov method, and the effectiveness of the proposed methods are validated with experimental results

    On positioning and vibration control application to robotic manipulators with a nonideal load carrying

    Get PDF
    In recent years, the evolution of artificial intelligence techniques has widely grown such that it gives new ways to improve human life, not only at work but also living. Nowadays, to the human being, physical human-robot interactions (PHRIs) have been presented very important and present itself as a major challenge for the current engineering. Therefore, this work designs and analyses a two-degree-of-freedom robotic arm with flexible joints driven by a DC motor. Due to the interaction between the robot links and flexible joints, the arm may present overshoots when it is moved such that it becomes difficult to manipulate the arm. Therefore, Magnetorheological dampers (MR damper or MR brake) are attached to the links of the arm in order to control such overshoot and provide a way to adjust the mechanical limitations of the arm. The dynamics of the system will be investigated, showing the appearance of chaotic behavior due to the coupling of the manipulator to the motors. After that, the feedback control is obtained through the state-dependent Riccati equation (SDRE) aiming the control of the positioning of the manipulator and the torque applied on the MR damper. Numerical results showed that the proposed control using hybrid actuators, DC motor, and MR brake was effective to control the position and behavior of the flexible joints of the manipulators

    Stabilization of Mobile Manipulators

    Get PDF
    The focus of this work is to generate a method of stabilization in a system generated through the marriage of a mobile robot and a manipulator. While the stability of a rigid manipulator is a solved problem, upon the introduction of flexibilities into the manipulator base structure there is the simultaneous introduction of an unmodeled, induced, oscillatory disturbance to the manipulator system from the mobile base suspension and mounting. Under normal circumstances, the disturbance can be modeled through experimentation and then a form of vibration suppression control can be employed to damp the induced oscillations in the base. This approach is satisfactory for disturbances that are measured, however the hardware necessary to measure the induced oscillations in the manipulator base is generally not included in mobile manipulation systems. Because of this lack of sensing hardware it becomes difficult to directly compensate for the induced disturbances in the system. Rather than developing a direct method for compensation, efforts are made to find postures of the manipulator where the flexibilities of the system are passive. In these postures the manipulator behaves as if it is on a rigid base, this allows the use of higher feedback gains and simpler control architectures.Ph.D
    • …
    corecore