4,611 research outputs found

    Composition and Self-Adaptation of Service-Based Systems with Feature Models

    Get PDF
    The adoption of mechanisms for reusing software in pervasive systems has not yet become standard practice. This is because the use of pre-existing software requires the selection, composition and adaptation of prefabricated software parts, as well as the management of some complex problems such as guaranteeing high levels of efficiency and safety in critical domains. In addition to the wide variety of services, pervasive systems are composed of many networked heterogeneous devices with embedded software. In this work, we promote the safe reuse of services in service-based systems using two complementary technologies, Service-Oriented Architecture and Software Product Lines. In order to do this, we extend both the service discovery and composition processes defined in the DAMASCo framework, which currently does not deal with the service variability that constitutes pervasive systems. We use feature models to represent the variability and to self-adapt the services during the composition in a safe way taking context changes into consideration. We illustrate our proposal with a case study related to the driving domain of an Intelligent Transportation System, handling the context information of the environment.Work partially supported by the projects TIN2008-05932, TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Semantic model-driven development of service-centric software architectures

    Get PDF
    Service-oriented architecture (SOA) is a recent architectural paradigm that has received much attention. The prevalent focus on platforms such as Web services, however, needs to be complemented by appropriate software engineering methods. We propose the model-driven development of service-centric software systems. We present in particular an investigation into the role of enriched semantic modelling for a modeldriven development framework for service-centric software systems. Ontologies as the foundations of semantic modelling and its enhancement through architectural pattern modelling are at the core of the proposed approach. We introduce foundations and discuss the benefits and also the challenges in this context

    Towards runtime discovery, selection and composition of semantic services

    Get PDF
    Service-orientation is gaining momentum in distributed software applications, mainly because it facilitates interoperability and allows application designers to abstract from underlying implementation technologies. Service composition has been acknowledged as a promising approach to create composite services that are capable of supporting service user needs, possibly by personalising the service delivery through the use of context information or user preferences. In this paper we discuss the challenges of automatic service composition, and present DynamiCoS, which is a novel framework that aims at supporting service composition on demand and at runtime for the benefit of service end-users. We define the DynamiCoS framework based on a service composition life-cycle. Framework mechanisms are introduced to tackle each of the phases and requirements of this life-cycle. Semantic services are used in our framework to enable reasoning on the service requests issued by end users, making it possible to automate service discovery, selection and composition. We validate our framework with a prototype that we have built in order to experiment with the mechanisms we have designed. The prototype was evaluated in a testing environment using some use case scenarios. The results of our evaluation give evidences of the feasibility of our approach to support runtime service composition. We also show the benefits of semantic-based frameworks for service composition, particularly for end-users who will be able to have more control on the service composition process

    Bi-dimensional Composition with Domain Specific Languages

    Get PDF

    Towards Dynamic Composition of Question Answering Pipelines

    Get PDF
    Question answering (QA) over knowledge graphs has gained significant momentum over the past five years due to the increasing availability of large knowledge graphs and the rising importance of question answering for user interaction. DBpedia has been the most prominently used knowledge graph in this setting. QA systems implement a pipeline connecting a sequence of QA components for translating an input question into its corresponding formal query (e.g. SPARQL); this query will be executed over a knowledge graph in order to produce the answer of the question. Recent empirical studies have revealed that albeit overall effective, the performance of QA systems and QA components depends heavily on the features of input questions, and not even the combination of the best performing QA systems or individual QA components retrieves complete and correct answers. Furthermore, these QA systems cannot be easily reused, extended, and results cannot be easily reproduced since the systems are mostly implemented in a monolithic fashion, lack standardised interfaces and are often not open source or available as Web services. All these drawbacks of the state of the art that prevents many of these approaches to be employed in real-world applications. In this thesis, we tackle the problem of QA over knowledge graph and propose a generic approach to promote reusability and build question answering systems in a collaborative effort. Firstly, we define qa vocabulary and Qanary methodology to develop an abstraction level on existing QA systems and components. Qanary relies on qa vocabulary to establish guidelines for semantically describing the knowledge exchange between the components of a QA system. We implement a component-based modular framework called "Qanary Ecosystem" utilising the Qanary methodology to integrate several heterogeneous QA components in a single platform. We further present Qaestro framework that provides an approach to semantically describing question answering components and effectively enumerates QA pipelines based on a QA developer requirements. Qaestro provides all valid combinations of available QA components respecting the input-output requirement of each component to build QA pipelines. Finally, we address the scalability of QA components within a framework and propose a novel approach that chooses the best component per task to automatically build QA pipeline for each input question. We implement this model within FRANKENSTEIN, a framework able to select QA components and compose pipelines. FRANKENSTEIN extends Qanary ecosystem and utilises qa vocabulary for data exchange. It has 29 independent QA components implementing five QA tasks resulting 360 unique QA pipelines. Each approach proposed in this thesis (Qanary methodology, Qaestro, and FRANKENSTEIN) is supported by extensive evaluation to demonstrate their effectiveness. Our contributions target a broader research agenda of offering the QA community an efficient way of applying their research to a research field which is driven by many different fields, consequently requiring a collaborative approach to achieve significant progress in the domain of question answering

    Big Data Analytics for QoS Prediction Through Probabilistic Model Checking

    Get PDF
    As competitiveness increases, being able to guaranting QoS of delivered services is key for business success. It is thus of paramount importance the ability to continuously monitor the workflow providing a service and to timely recognize breaches in the agreed QoS level. The ideal condition would be the possibility to anticipate, thus predict, a breach and operate to avoid it, or at least to mitigate its effects. In this paper we propose a model checking based approach to predict QoS of a formally described process. The continous model checking is enabled by the usage of a parametrized model of the monitored system, where the actual value of parameters is continuously evaluated and updated by means of big data tools. The paper also describes a prototype implementation of the approach and shows its usage in a case study.Comment: EDCC-2014, BIG4CIP-2014, Big Data Analytics, QoS Prediction, Model Checking, SLA compliance monitorin
    corecore