35,496 research outputs found

    A PVS-Simulink Integrated Environment for Model-Based Analysis of Cyber-Physical Systems

    Get PDF
    This paper presents a methodology, with supporting tool, for formal modeling and analysis of software components in cyber-physical systems. Using our approach, developers can integrate a simulation of logic-based specifications of software components and Simulink models of continuous processes. The integrated simulation is useful to validate the characteristics of discrete system components early in the development process. The same logic-based specifications can also be formally verified using the Prototype Verification System (PVS), to gain additional confidence that the software design complies with specific safety requirements. Modeling patterns are defined for generating the logic-based specifications from the more familiar automata-based formalism. The ultimate aim of this work is to facilitate the introduction of formal verification technologies in the software development process of cyber-physical systems, which typically requires the integrated use of different formalisms and tools. A case study from the medical domain is used to illustrate the approach. A PVS model of a pacemaker is interfaced with a Simulink model of the human heart. The overall cyber-physical system is co-simulated to validate design requirements through exploration of relevant test scenarios. Formal verification with the PVS theorem prover is demonstrated for the pacemaker model for specific safety aspects of the pacemaker design

    Methodology for Designing Decision Support Systems for Visualising and Mitigating Supply Chain Cyber Risk from IoT Technologies

    Full text link
    This paper proposes a methodology for designing decision support systems for visualising and mitigating the Internet of Things cyber risks. Digital technologies present new cyber risk in the supply chain which are often not visible to companies participating in the supply chains. This study investigates how the Internet of Things cyber risks can be visualised and mitigated in the process of designing business and supply chain strategies. The emerging DSS methodology present new findings on how digital technologies affect business and supply chain systems. Through epistemological analysis, the article derives with a decision support system for visualising supply chain cyber risk from Internet of Things digital technologies. Such methods do not exist at present and this represents the first attempt to devise a decision support system that would enable practitioners to develop a step by step process for visualising, assessing and mitigating the emerging cyber risk from IoT technologies on shared infrastructure in legacy supply chain systems

    Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems, cyber risk at the edge

    Get PDF
    The Internet of Things (IoT) triggers new types of cyber risks. Therefore, the integration of new IoT devices and services requires a self-assessment of IoT cyber security posture. By security posture this article refers to the cybersecurity strength of an organisation to predict, prevent and respond to cyberthreats. At present, there is a gap in the state of the art, because there are no self-assessment methods for quantifying IoT cyber risk posture. To address this gap, an empirical analysis is performed of 12 cyber risk assessment approaches. The results and the main findings from the analysis is presented as the current and a target risk state for IoT systems, followed by conclusions and recommendations on a transformation roadmap, describing how IoT systems can achieve the target state with a new goal-oriented dependency model. By target state, we refer to the cyber security target that matches the generic security requirements of an organisation. The research paper studies and adapts four alternatives for IoT risk assessment and identifies the goal-oriented dependency modelling as a dominant approach among the risk assessment models studied. The new goal-oriented dependency model in this article enables the assessment of uncontrollable risk states in complex IoT systems and can be used for a quantitative self-assessment of IoT cyber risk posture
    • …
    corecore