41 research outputs found

    Spectral analysis of a block-triangular preconditioner for the bidomain system in electrocardiology

    Get PDF
    In this paper we analyze in detail the spectral properties of the block-triangular preconditioner introduced by Gerardo-Giorda et al. [J. Comput. Phys., 228 (2009), pp. 3625-3639] for the Bidomain system in non-symmetric form. We show that the conditioning of the preconditioned problem is bounded in the Fourier space independently of the frequency variable, ensuring quasi-optimality with respect to the mesh size. We derive an explicit formula to optimize the preconditioner performance by identifying a parameter that depends only on the coefficients of the problem and is easy to compute. We provide numerical tests in three dimensions that confirm the optimality of the parameter and the substantial independence of the mesh size. Copyrigh

    BPX preconditioners for the Bidomain model of electrocardiology

    Get PDF
    The aim of this work is to develop a BPX preconditioner for the Bidomain model of electrocardiology. This model describes the bioelectrical activity of the cardiac tissue and consists of a system of a non-linear parabolic reaction\u2013diffusion partial differential equation (PDE) and an elliptic linear PDE, modeling at macroscopic level the evolution of the transmembrane and extracellular electric potentials of the anisotropic cardiac tissue. The evolution equation is coupled through the non-linear reaction term with a stiff system of ordinary differential equations, the so-called membrane model, describing the ionic currents through the cellular membrane. The discretization of the coupled system by finite elements in space and semi-implicit finite differences in time yields at each time step the solution of an ill-conditioned linear system. The goal of the present study is to construct, analyze and numerically test a BPX preconditioner for the linear system arising from the discretization of the Bidomain model. Optimal convergence rate estimates are established and verified by two- and three-dimensional numerical tests on both structured and unstructured meshes. Moreover, in a full heartbeat simulation on a three-dimensional wedge of ventricular tissue, the BPX preconditioner is about 35% faster in terms of CPU times than ILU(0) and an Algebraic Multigrid preconditioner

    An introduction to mathematical and numerical modeling in heart electrophysiology

    Get PDF
    The electrical activation of the heart is the biological process that regulates the contraction of the cardiac muscle, allowing it to pump blood to the whole body. In physiological conditions, the pacemaker cells of the sinoatrial node generate an action potential (a sudden variation of the cell transmembrane potential) which, following preferential conduction pathways, propagates throughout the heart walls and triggers the contraction of the heart chambers. The action potential propagation can be mathematically described by coupling a model for the ionic currents, flowing through the membrane of a single cell, with a macroscopical model that describes the propagation of the electrical signal in the cardiac tissue. The most accurate model available in the literature for the description of the macroscopic propagation in the muscle is the Bidomain model, a degenerate parabolic system composed of two non-linear partial differential equations for the intracellular and extracellular potential. In this paper, we present an introduction to the fundamental aspects of mathematical modeling and numerical simulation in cardiac electrophysiology

    The LifeV library: engineering mathematics beyond the proof of concept

    Get PDF
    LifeV is a library for the finite element (FE) solution of partial differential equations in one, two, and three dimensions. It is written in C++ and designed to run on diverse parallel architectures, including cloud and high performance computing facilities. In spite of its academic research nature, meaning a library for the development and testing of new methods, one distinguishing feature of LifeV is its use on real world problems and it is intended to provide a tool for many engineering applications. It has been actually used in computational hemodynamics, including cardiac mechanics and fluid-structure interaction problems, in porous media, ice sheets dynamics for both forward and inverse problems. In this paper we give a short overview of the features of LifeV and its coding paradigms on simple problems. The main focus is on the parallel environment which is mainly driven by domain decomposition methods and based on external libraries such as MPI, the Trilinos project, HDF5 and ParMetis. Dedicated to the memory of Fausto Saleri.Comment: Review of the LifeV Finite Element librar

    Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements

    Get PDF

    A comparison of coupled and uncoupled solvers for the cardiac Bidomain model

    Get PDF
    The aim of this work is to compare a new uncoupled solver for the cardiac Bidomain model with a usual coupled solver. The Bidomain model describes the bioelectric activity of the cardiac tissue and consists of a system of a non-linear parabolic reaction-diffusion partial differential equation (PDE) and an elliptic linear PDE. This system models at macroscopic level the evolution of the transmembrane and extracellular electric potentials of the anisotropic cardiac tissue. The evolution equation is coupled through the non-linear reaction term with a stiff system of ordinary differential equations (ODEs), the so-called membrane model, describing the ionic currents through the cellular membrane. A novel uncoupled solver for the Bidomain system is here introduced, based on solving twice the parabolic PDE and once the elliptic PDE at each time step, and it is compared with a usual coupled solver. Three-dimensional numerical tests have been performed in order to show that the proposed uncoupled method has the same accuracy of the coupled strategy. Parallel numerical tests on structured meshes have also shown that the uncoupled technique is as scalable as the coupled one. Moreover, the conjugate gradient method preconditioned by Multilevel Hybrid Schwarz preconditioners converges faster for the linear systems deriving from the uncoupled method than from the coupled one. Finally, in all parallel numerical tests considered, the uncoupled technique proposed is always about two or three times faster than the coupled approach

    Optimized schwarz methods for the bidomain system in electrocardiology

    Get PDF
    The propagation of the action potential in the heart chambers is accurately described by the Bidomain model, which is commonly accepted and used in the specialistic literature. However, its mathematical structure of a degenerate parabolic system entails high computational costs in the numerical solution of the associated linear system. Domain decomposition methods are a natural way to reduce computational costs, and Optimized Schwarz Methods have proven in the recent years their effectiveness in accelerating the convergence of such algorithms. The latter are based on interface matching conditions more efficient than the classical Dirichlet or Neumann ones. In this paper we analyze an Optimized Schwarz approach for the numerical solution of the Bidomain problem. We assess the convergence of the iterative method by means of Fourier analysis, and we investigate the parameter optimization in the interface conditions. Numerical results in 2D and 3D are given to show the effectiveness of the method

    A posteriori error estimator for model adaptivity in electrocardiology

    Get PDF
    We introduce an a posteriori modeling error estimator for the effective computation of electric potential propagation in the heart. Starting from the Bidomain problem and an extended formulation of the simplified Monodomain system, we build a hybrid model, called Hybridomain, which is dynamically adapted to be either Bi- or Monodomain ones in different regions of the computational domain according to the error estimator. We show that accurate results can be obtained with the adaptive Hybridomain model with a reduced computational cost compared to the full Bidornain model. We discuss the effectivity of the estimator and the reliability of the results on simulations performed on real human left ventricle geometries retrieved from healthy subjects. (C) 2010 Elsevier B.V. All rights reserved
    corecore