11,614 research outputs found

    LeaF: A Learning-based Fault Diagnostic System for Multi-Robot Teams

    Get PDF
    The failure-prone complex operating environment of a standard multi-robot application dictates some amount of fault-tolerance to be incorporated into every system. In fact, the quality of the incorporated fault-tolerance has a direct impact on the overall performance of the system. Despite the extensive work being done in the field of multi-robot systems, there does not exist a general methodology for fault diagnosis and recovery. The objective of this research, in part, is to provide an adaptive approach that enables the robot team to autonomously detect and compensate for the wide variety of faults that could be experienced. The key feature of the developed approach is its ability to learn useful information from encountered faults, unique or otherwise, towards a more robust system. As part of this research, we analyzed an existing multi-agent architecture, CMM – Causal Model Method – as a fault diagnostic solution for a sample multi-robot application. Based on the analysis, we claim that a causal model approach is effective for anticipating and recovering from many types of robot team errors. However, the analysis also showed that the CMM method in its current form is incomplete as a turn-key solution. Due to the significant number of possible failure modes in a complex multi-robot application, and the difficulty in anticipating all possible failures in advance, one cannot guarantee the generation of a complete a priori causal model that identifies and specifies all faults that may occur in the system. Therefore, based on these preliminary studies, we designed an alternate approach, called LeaF: Learning based Fault diagnostic architecture for multi-robot teams. LeaF is an adaptive method that uses its experience to update and extend its causal model to enable the team, over time, to better recover from faults when they occur. LeaF combines the initial fault model with a case-based learning algorithm, LID – Lazy Induction of Descriptions — to allow robot team members to diagnose faults and to automatically update their causal models. The modified LID algorithm uses structural similarity between fault characteristics as a means of classifying previously un-encountered faults. Furthermore, the use of learning allows the system to identify and categorize unexpected faults, enable team members to learn from problems encountered by others, and make intelligent decisions regarding the environment. To evaluate LeaF, we implemented it in two challenging and dynamic physical multi-robot applications. The other significant contribution of the research is the development of metrics to measure the fault-tolerance, within the context of system performance, for a multi-robot system. In addition to developing these metrics, we also outline potential methods to better interpret the obtained measures towards truly understanding the capabilities of the implemented system. The developed metrics are designed to be application independent and can be used to evaluate and/or compare different fault-tolerance architectures like CMM and LeaF. To the best of our knowledge, this approach is the only one that attempts to capture the effect of intelligence, reasoning, or learning on the effective fault-tolerance of the system, rather than relying purely on traditional redundancy based measures. Finally, we show the utility of the designed metrics by applying them to the obtained physical robot experiments, measuring the effective fault-tolerance and system performance, and subsequently analyzing the calculated measures to help better understand the capabilities of LeaF

    Model-based approach for fault diagnosis using set-membership formulation

    Get PDF
    This paper describes a robust model-based fault diagnosis approach that enables to enhance the sensitivity analysis of the residuals. A residual is a fault indicator generated from an analytical redundancy relation which is derived from the structural and causal properties of the signed bond graph model. The proposed approach is implemented in two stages. The first stage consists in computing the residuals using available input and measurements while the second level leads to moving horizon residuals enclosures according to an interval consistency technique. These enclosures are determined by solving a constraint satisfaction problem which requires to know the derivatives of measured outputs as well as their boundaries. A numerical differentiator is then proposed to estimate these derivatives while providing their intervals. Finally, an inclusion test is performed in order to detect a fault upon occurrence. The proposed approach is well suited to deal with different kinds of faults and its performances are demonstrated through experimental data of an omni-directional robot

    Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems

    Get PDF
    This document is a self-archiving copy of the accepted version of the paper. Please find the final published version in IEEEXplore: http://dx.doi.org/10.1109/TE.2014.2358551This paper proposes lab work for learning fault detection and diagnosis (FDD) in mechatronic systems. These skills are important for engineering education because FDD is a key capability of competitive processes and products. The intended outcome of the lab work is that students become aware of the importance of faulty conditions and learn to design FDD strategies for a real system. To this end, the paper proposes a lab project where students are requested to develop a discrete event dynamic system (DEDS) diagnosis to cope with two faulty conditions in an autonomous mobile robot task. A sample solution is discussed for LEGO Mindstorms NXT robots with LabVIEW. This innovative practice is relevant to higher education engineering courses related to mechatronics, robotics, or DEDS. Results are also given of the application of this strategy as part of a postgraduate course on fault-tolerant mechatronic systems.This work was supported in part by the Spanish CICYT under Project DPI2011-22443

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Safety verification of a fault tolerant reconfigurable autonomous goal-based robotic control system

    Get PDF
    Fault tolerance and safety verification of control systems are essential for the success of autonomous robotic systems. A control architecture called Mission Data System (MDS), developed at the Jet Propulsion Laboratory, takes a goal-based control approach. In this paper, a method for converting goal network control programs into linear hybrid systems is developed. The linear hybrid system can then be verified for safety in the presence of failures using existing symbolic model checkers. An example task is simulated in MDS and successfully verified using HyTech, a symbolic model checking software for linear hybrid systems

    Diagnosing faults in autonomous robot plan execution

    Get PDF
    A major requirement for an autonomous robot is the capability to diagnose faults during plan execution in an uncertain environment. Many diagnostic researches concentrate only on hardware failures within an autonomous robot. Taking a different approach, the implementation of a Telerobot Diagnostic System that addresses, in addition to the hardware failures, failures caused by unexpected event changes in the environment or failures due to plan errors, is described. One feature of the system is the utilization of task-plan knowledge and context information to deduce fault symptoms. This forward deduction provides valuable information on past activities and the current expectations of a robotic event, both of which can guide the plan-execution inference process. The inference process adopts a model-based technique to recreate the plan-execution process and to confirm fault-source hypotheses. This technique allows the system to diagnose multiple faults due to either unexpected plan failures or hardware errors. This research initiates a major effort to investigate relationships between hardware faults and plan errors, relationships which were not addressed in the past. The results of this research will provide a clear understanding of how to generate a better task planner for an autonomous robot and how to recover the robot from faults in a critical environment

    Integrating case-based reasoning and hypermedia documentation: an application for the diagnosis of a welding robot at Odense steel shipyard

    No full text
    Reliable and effective maintenance support is a vital consideration for the management within today's manufacturing environment. This paper discusses the development of a maintenance system for the world's largest robot welding facility. The development system combines a case-based reasoning approach for diagnosis with context information, as electronic on-line manuals, linked using open hypermedia technology. The work discussed in this paper delivers not only a maintenance system for the robot stations under consideration, but also a design framework for developing maintenance systems for other similar applications

    Ground reaction force sensor fault detection and recovery method based on virtual force sensor for walking biped robots

    Get PDF
    This paper presents a novel method for ground force sensor faults detection and faulty signal reconstruction using Virtual force Sensor (VFS) for slow walking bipeds. The design structure of the VFS consists of two steps, the total ground reaction force (GRF) and its location estimation for each leg based on the center of mass (CoM) position, the leg kinematics, and the IMU readings is carried on in the first step. In the second step, the optimal estimation of the distributed reaction forces at the contact points in the feet sole of walking biped is carried on. For the optimal estimation, a constraint model is obtained for the distributed reaction forces at the contact points and the quadratic programming optimization method is used to solve for the GRF. The output of the VFS is used for fault detection and recovery. A faulty signal model is formed to detect the faults based on a threshold, and recover the signal using the VFS outputs. The sensor offset, drift, and frozen output faults are studied and tested. The proposed method detects and estimates the faults and recovers the faulty signal smoothly. The validity of the proposed estimation method was confirmed by simulations on 3D dynamics model of the humanoid robot SURALP while walking. The results are promising and prove themselves well in all of the studied fault cases
    corecore