44,926 research outputs found

    Development of security strategies using Kerberos in wireless networks

    Get PDF
    Authentication is the primary function used to reduce the risk of illegitimate access to IT services of any organisation. Kerberos is a widely used authentication protocol for authentication and access control mechanisms. This thesis presents the development of security strategies using Kerberos authentication protocol in wireless networks, Kerberos-Key Exchange protocol, Kerberos with timed-delay, Kerberos with timed-delay and delayed decryption, Kerberos with timed-delay, delayed decryption and password encryption properties. This thesis also includes a number of other research works such as, frequently key renewal under pseudo-secure conditions and shut down of the authentication server to external access temporarily to allow for secure key exchange. A general approach for the analysis and verification of authentication properties as well as Kerberos authentication protocol are presented. Existing authentication mechanisms coupled with strong encryption techniques are considered, investigated and analysed in detail. IEEE 802.1x standard, IEEE 802.11 wireless communication networks are also considered. First, existing security and authentication approaches for Kerberos authentication protocol are critically analysed with the discussions on merits and weaknesses. Then relevant terminology is defined and explained. Since Kerberos exhibits some vulnerabilities, the existing solutions have not treated the possibilities of more than one authentication server in a strict sense. A three way authentication mechanism addresses possible solution to this problem. An authentication protocol has been developed to improve the three way authentication mechanism for Kerberos. Dynamically renewing keys under pseudo-secure situations involves a temporary interruption to link/server access. After describing and analysing a protocol to achieve improved security for authentication, an analytical method is used to evaluate the cost in terms of the degradation of system performability. Various results are presented. An approach that involves a new authentication protocol is proposed. This new approach combines delaying decryption with timed authentication by using passwords and session keys for authentication purposes, and frequent key renewal under secure conditions. The analysis and verification of authentication properties and results of the designed protocol are presented and discussed. Protocols often fail when they are analysed critically. Formal approaches have emerged to analyse protocol failures. Abstract languages are designed especially for the description of communication patterns. A notion of rank functions is introduced for analysing purposes as well. An application of this formal approach to a newly designed authentication protocol that combines delaying the decryption process with timed authentication is presented. Formal methods for verifying cryptographic protocols are created to assist in ensuring that authentication protocols meet their specifications. Model checking techniques such as Communicating Sequential Processes (CSP) and Failure Divergence Refinement (FDR) checker, are widely acknowledged for effectively and efficiently revealing flaws in protocols faster than most other contemporaries. Essentially, model checking involves a detailed search of all the states reachable by the components of a protocol model. In the models that describe authentication protocols, the components, regarded as processes, are the principals including intruder (attacker) and parameters for authentication such as keys, nonces, tickets, and certificates. In this research, an automated generation tool, CASPER is used to produce CSP descriptions. Proposed protocol models rely on trusted third parties in authentication transactions while intruder capabilities are based on possible inductions and deductions. This research attempts to combine the two methods in model checking in order to realise an abstract description of intruder with enhanced capabilities. A target protocol of interest is that of Kerberos authentication protocol. The process of increasing the strength of security mechanisms usually impacts on performance thresholds. In recognition of this fact, the research adopts an analytical method known as spectral expansion to ascertain the level of impact, and which resulting protocol amendments will have on performance. Spectral expansion is based on state exploration. This implies that it is subject, as model checking, to the state explosion problem. The performance characteristics of amended protocols are examined relative to the existing protocols. Numerical solutions are presented for all models developed

    MQTT-PRESENT: Approach to secure internet of things applications using MQTT protocol

    Get PDF
    The big challenge to raise for deploying the application's domain of the Internet of Things is security. As one of the popular messaging protocols in the IoT world, the message queue telemetry transport (MQTT) is designed for constrained devices and machine-to-machine communications, based on the publish-subscribe model, it offers a basic authentication using username and password. However, this authentication method might have a problem in terms of security and scalability. In this paper, we provide an analysis of the current research in the literature related to the security for the MQTT protocol, before we give a brief description of each algorithm used on our approach, to finally propose a new approach to secure this protocol based on AugPAKE algorithm and PRESENT encryption. This solution provides mutual authentication between the broker and their clients (publishers and subscribers), the confidentiality of the published message is protected twice, the integrity and non-repudiation of MQTT messages which is protected during the process of transmission

    Security for network services delivery of 5G enabled device-to-device communications mobile network

    Get PDF
    The increase in mobile traffic led to the development of Fifth Generation (5G) mobile network. 5G will provide Ultra Reliable Low Latency Communication (URLLC), Massive Machine Type Communication (mMTC), enhanced Mobile Broadband (eMBB). Device-to-Device (D2D) communications will be used as the underlaying technology to offload traffic from 5G Core Network (5GC) and push content closer to User Equipment (UE). It will be supported by a variety of Network Service (NS) such as Content-Centric Networking (CCN) that will provide access to other services and deliver content-based services. However, this raises new security and delivery challenges. Therefore, research was conducted to address the security issues in delivering NS in 5G enabled D2D communications network. To support D2D communications in 5G, this thesis introduces a Network Services Delivery (NSD) framework defining an integrated system model. It incorporates Cloud Radio Access Network (C-RAN) architecture, D2D communications, and CCN to support 5G’s objectives in Home Network (HN), roaming, and proximity scenarios. The research explores the security of 5G enabled D2D communications by conducting a comprehensive investigation on security threats. It analyses threats using Dolev Yao (DY) threat model and evaluates security requirements using a systematic approach based on X.805 security framework. Which aligns security requirements with network connectivity, service delivery, and sharing between entities. This analysis highlights the need for security mechanisms to provide security to NSD in an integrated system, to specify these security mechanisms, a security framework to address the security challenges at different levels of the system model is introduced. To align suitable security mechanisms, the research defines underlying security protocols to provide security at the network, service, and D2D levels. This research also explores 5G authentication protocols specified by the Third Generation Partnership Project (3GPP) for securing communication between UE and HN, checks the security guarantees of two 3GPP specified protocols, 5G-Authentication and Key Agreement (AKA) and 5G Extensive Authentication Protocol (EAP)-AKA’ that provide primary authentication at Network Access Security (NAC). The research addresses Service Level Security (SLS) by proposing Federated Identity Management (FIdM) model to integrate federated security in 5G, it also proposes three security protocols to provide secondary authentication and authorization of UE to Service Provider (SP). It also addresses D2D Service Security (DDS) by proposing two security protocols that secure the caching and sharing of services between two UEs in different D2D communications scenarios. All protocols in this research are verified for functional correctness and security guarantees using a formal method approach and semi-automated protocol verifier. The research conducts security properties and performance evaluation of the protocols for their effectiveness. It also presents how each proposed protocol provides an interface for an integrated, comprehensive security solution to secure communications for NSD in a 5G enabled D2D communications network. The main contributions of this research are the design and formal verification of security protocols. Performance evaluation is supplementary

    Simple Public Key Infrastructure Analysis Protocol Analysis and Design

    Get PDF
    Secure electronic communication is based on secrecy, authentication and authorization. One means of assuring a communication has these properties is to use Public Key Cryptography (PKC). The framework consisting of standards, protocols and instructions that make PKC usable in communication applications is called a Public Key Infrastructure (PKI). This thesis aims at proving the applicability of the Simple Public Key Infrastructure (SPKI) as a means of PKC. The strand space approach of Guttman and Thayer is used to provide an appropriate model for analysis. A Diffie-Hellman strand space model is combined with mixed strand space proof methods for proving the correctness of multiple protocols operating in the same context. The result is the public key mixed strand space model. This model is ideal for the analysis of SPKI applications operating as sub-protocols of an implementing application. This thesis then models the popular Internet Transport Layer Security (TLS) protocol as a public key mixed strand space model. The model includes the integration of SPKI certificates. To accommodate the functionality of SPKI, a new protocol is designed for certificate validation, the Certificate Chain Validation Protocol (CCV). The CCV protocol operates as a sub-protocol to TLS and provides online certificate validation. The security of the TLS protocol integrated with SPKI certificates and subprotocols is then analyzed to prove its security properties

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Timed Analysis of Security Protocols

    Get PDF
    We propose a method for engineering security protocols that are aware of timing aspects. We study a simplified version of the well-known Needham Schroeder protocol and the complete Yahalom protocol, where timing information allows the study of different attack scenarios. We model check the protocols using UPPAAL. Further, a taxonomy is obtained by studying and categorising protocols from the well known Clark Jacob library and the Security Protocol Open Repository (SPORE) library. Finally, we present some new challenges and threats that arise when considering time in the analysis, by providing a novel protocol that uses time challenges and exposing a timing attack over an implementation of an existing security protocol

    Formal Analysis of V2X Revocation Protocols

    Get PDF
    Research on vehicular networking (V2X) security has produced a range of security mechanisms and protocols tailored for this domain, addressing both security and privacy. Typically, the security analysis of these proposals has largely been informal. However, formal analysis can be used to expose flaws and ultimately provide a higher level of assurance in the protocols. This paper focusses on the formal analysis of a particular element of security mechanisms for V2X found in many proposals: the revocation of malicious or misbehaving vehicles from the V2X system by invalidating their credentials. This revocation needs to be performed in an unlinkable way for vehicle privacy even in the context of vehicles regularly changing their pseudonyms. The REWIRE scheme by Forster et al. and its subschemes BASIC and RTOKEN aim to solve this challenge by means of cryptographic solutions and trusted hardware. Formal analysis using the TAMARIN prover identifies two flaws with some of the functional correctness and authentication properties in these schemes. We then propose Obscure Token (OTOKEN), an extension of REWIRE to enable revocation in a privacy preserving manner. Our approach addresses the functional and authentication properties by introducing an additional key-pair, which offers a stronger and verifiable guarantee of successful revocation of vehicles without resolving the long-term identity. Moreover OTOKEN is the first V2X revocation protocol to be co-designed with a formal model.Comment: 16 pages, 4 figure
    • …
    corecore