1,081 research outputs found

    Spatial Noise-Field Control With Online Secondary Path Modeling: A Wave-Domain Approach

    Get PDF
    Due to strong interchannel interference in multichannel active noise control (ANC), there are fundamental problems associated with the filter adaptation and online secondary path modeling remains a major challenge. This paper proposes a wave-domain adaptation algorithm for multichannel ANC with online secondary path modelling to cancel tonal noise over an extended region of two-dimensional plane in a reverberant room. The design is based on exploiting the diagonal-dominance property of the secondary path in the wave domain. The proposed wave-domain secondary path model is applicable to both concentric and nonconcentric circular loudspeakers and microphone array placement, and is also robust against array positioning errors. Normalized least mean squares-type algorithms are adopted for adaptive feedback control. Computational complexity is analyzed and compared with the conventional time-domain and frequency-domain multichannel ANCs. Through simulation-based verification in comparison with existing methods, the proposed algorithm demonstrates more efficient adaptation with low-level auxiliary noise.DP14010341

    Active Noise Control Over Space: A Wave Domain Approach

    Get PDF
    Noise control and cancellation over a spatial region is a fundamental problem in acoustic signal processing. In this paper, we utilize wave-domain adaptive algorithms to iteratively calculate the secondary source driving signals and to cancel the primary noise field over the control region. We propose wave-domain active noise control algorithms based on two minimization problems: first, minimizing the wave-domain residual signal coefficients, and second, minimizing the acoustic potential energy over the region, and derive the update equations with respect to two variables, the loudspeaker weights and wave-domain secondary source coefficients. Simulation results demonstrate the effectiveness of the proposed algorithms, more specifically the convergence speed and the noise cancellation performance in terms of the noise reduction level and acoustic potential energy reduction level over the entire spatial region.DP14010341

    Rapidly converging multichannel controllers for broadband noise and vibrations

    Get PDF
    Applications are given of a preconditioned adaptive algorithm for broadband multichannel active noise control. Based on state-space descriptions of the relevant transfer functions, the algorithm uses the inverse of the minimum-phase part of the secondary path in order to improve the speed of convergence. A further improvement of the convergence rate is obtained by using double control filters for elimination of adaptation loop delay. Regularization was found to be essential for robust operation. The particular regularization technique preserves the structure to eliminate the adaptation loop delay. Depending on the application at hand, a number of extensions are used for this algorithm, such as for applications with rapidly changing disturbance spectra, applications with large parametric uncertainty, applications with control of time-varying acoustic energy density

    ACTIVE NOISE CONTROL USING CARBON NANOTUBE THERMOPHONES: CASE STUDY FOR AN AUTOMOTIVE HVAC APPLICATION

    Get PDF
    The goal of this project was to reduce the overall noise levels emitted by the HVAC components in a vehicle’s cabin. More specifically, the feasibility of achieving this goal using two key technologies was investigated. The first of these technologies, Active Noise Control (ANC), is a noise attenuation technique that relies on destructive interference that “cancels” unwanted noise. Typically used in situations where physical constraints prevent passive attenuation techniques from being used, ANC is known for its high size-to-effectiveness ratio. This benefit cannot be gained without a cost however; the complexity of ANC systems is significantly higher than their passive counterparts. This is due to the signal processing and actuator designs required. These actuators often take the form of moving-coil loudspeakers which, while effective, are often bulky. Because of this they are difficult to “drop in” to an existing system. This is where the second technology comes in. Carbon Nanotube (CNT) Thermophones are solid-state speakers that operate by using rapid heat fluctuations to create sound. Called the “thermoacoustic effect,” (TE) the theory of this operating principle dates to the turn of the 20th century. Useful demonstration of TE did not occur until 2008, however, when researchers first developed the first CNT thermophones. The hallmark characteristics of these transducers are their small size and flexible nature. Compared to traditional loudspeakers they have a much smaller form factor and are more versatile in terms of where they can be placed in a cramped system. The marriage of CNT transducers to ANC technology shows promise in improving the application space and ease of installation of ANC systems. Getting these two to cooperate, however, is not without challenges. A case study for this union is presented here; the application space being the ducted environment of vehicle HVAC systems

    Adaptive multichannel control of time-varying broadband noise and vibrations

    Get PDF
    This paper presents results obtained from a number of applications in which a recent adaptive algorithm for broadband multichannel active noise control is used. The core of the algorithm uses the inverse of the minimum-phase part of the secondary path for improvement of the speed of convergence. A further improvement of the speed of convergence is obtained by using double control filters for elimination of adaptation loop delay. Regularization was found to be necessary for robust operation. The regularization technique which is used preserves the structure to eliminate the adaptation loop delay. Depending on the application at hand, a number of extensions are used for this algorithm. For an application with rapidly changing disturbance spectra, the core algorithm was extended with an iterative affine projection scheme, leading to improved convergence rates as compared to the standard nomalized lms update rules. In another application, in which the influence of the parametric uncertainties was critical, the core algorithm was extended with low authority control loops operating at high sample rates. In addition, results of other applications are given, such as control of acoustic energy density and control of time-varying periodic and non-periodic vibrations

    Noise cancellation over spatial regions using adaptive wave domain processing

    Get PDF
    This paper proposes wave-domain adaptive processing for noise cancellation within a large spatial region. We use fundamental solutions of the Helmholtz wave-equation as basis functions to express the noise field over a spatial region and show the wave-domain processing directly on the decomposition coefficients to control the entire region. A feedback control system is implemented, where only a single microphone array is placed at the boundary of the control region to measure the residual signals, and a loudspeaker array is used to generate the anti-noise signals. We develop the adaptive wave-domain filtered-x least mean square algorithm. Simulation results show that using the proposed method the noise over the entire control region can be significantly reduced with fast convergence in both free-field and reverberant environmentsThanks to Australian Research Councils Discovery Projects funding scheme (project no. DP140103412). The work of J. Zhang was sponsored by the China Scholarship Council with the Australian National University

    Sound Zone Control inside Spatially Confined Regions in Acoustic Enclosures

    Get PDF

    Spatial noise cancellation inside cars: Performance analysis and experimental results

    Get PDF
    A loudspeaker array is a key component in active noise cancellation (ANC) systems. Most in-car ANC systems utilize the car’s own integrated loudspeakers to cancel the noise due to engine and other sources. In this paper, we evaluate the integrated loudspeakers’ noise cancelling capabilities by analyzing the in-car noise field and the loudspeaker responses. We show that the average noise power in a spatial region can be expressed using a series of coefficients, and that the noise field can be decomposed into several basis noise patterns. Through analysing the measurements in a car, we show that the car’s built-in loudspeakers are capable of attenuating the driving noise by up to 30 dB for frequencies up to 500 Hz within a spherical region of 10 cm radius
    • 

    corecore