506 research outputs found

    6G Vision: Towards Future Collaborative Cognitive Communication (3C) Systems

    Get PDF
    6G networks are expected to have a breakthrough by enabling the emergence of collaborative cognitive communication services over heterogeneous environments for industry 5.0 applications. These applications are required to adapt human-centric approach to make the most of human intuition and intelligence in Industry 4.0 automation.It calls for a transdisciplinarity research domain to investigate innovative systems with overlapping realms of Psychology, Sociology, Communication networks, Artificial Intelligence , Natural Language Processing and Collaborative Computing. The author at the Cognitive Systems Research Centre, London South Bank University has coined the expression “3C Systems" to refer to such artifacts which stands for "Collaborative Cognitive Communication Systems”. In this paper, an innovative framework for 3C Systems is proposed that is able to analyze and predict both the human as well as machine behaviors. It proactively diagnoses issues and recommends solutions without requiring any human intervention. The proposed concept of 3C Systems would potentially contribute towards 6G standardization. The automation and orchestration aspects of this research have variety of applications stretched across city infrastructures, retail, business, tourism, health, law, education and travel. A thorough insight to a broad view of 6G vision has been presented towards envisioned 3C Systems, while covering its enabling technologies. The experimental results for the proof of concept implementation has been presented. Results affirm the technical capabilities of the concept, to contribute to several industry 5.0 applications including, but not limited to holographic communication, self-driving vehicles, context-aware infrastructure and personalized interfaces

    Supporting Sustainable Virtual Network Mutations with Mystique

    Get PDF
    The abiding attempt of automation has also permeated the networks, with the ability to measure, analyze, and control themselves in an automated manner, by reacting to changes in the environment (e.g., demand). When provided with these features, networks are often labeled as "self-driving" or "autonomous". In this regard, the provision and orchestration of physical or virtual resources are crucial for both Quality of Service (QoS) guarantees and cost management in the edge/cloud computing environment. To effectively manage the lifecycle of these resources, an auto-scaling mechanism is essential. However, traditional threshold-based and recent Machine Learning (ML)-based policies are often unable to address the soaring complexity of networks due to their centralized approach. By relying on multi-agent reinforcement learning, we propose Mystique, a solution that learns from the load on links to establish the minimal set of active network resources. As traffic demands ebb and flow, our adaptive and self-driving solution can scale up and down and also react to failures in a fully automated, flexible, and efficient manner. Our results demonstrate that the presented solution can reduce network energy consumption while providing an adequate service level, outperforming other benchmark auto-scaling approaches

    Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a new emerging technology which has attracted enormous interest over the last few years. It enables vehicles to communicate with each other and with roadside infrastructures for many applications. One of the promising applications is multimedia services for traffic safety or infotainment. The video service requires a good quality to satisfy the end-user known as the Quality of Experience (QoE). Several models have been suggested in the literature to measure or predict this metric. In this paper, we present an overview of interesting researches, which propose QoE models for video streaming over VANETs. The limits and deficiencies of these models are identified, which shed light on the challenges and real problems to overcome in the future

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Semantic-aware Digital Twin for Metaverse: A Comprehensive Review

    Full text link
    To facilitate the deployment of digital twins in Metaverse, the paradigm with semantic awareness has been proposed as a means for enabling accurate and task-oriented information extraction with inherent intelligence. However, this framework requires all devices in the Metaverse environment to be directly linked with the semantic model to enable faithful interpretation of messages. In contrast, this article introduces the digital twin framework, considering a smart industrial application, which enables semantic communication in conjugation with the Metaverse enabling technologies. The fundamentals of this framework are demonstrated on an industrial shopfloor management use case with a digital twin so as to improve its performance through semantic communication. An overview of semantic communication, Metaverse, and digital twins is presented. Integration of these technologies with the basic architecture as well as the impact on future industrial applications is presented. In a nutshell, this article showcases how semantic awareness can be an effective candidate in the implementation of digital twins for Metaverse applications.Comment: 9 pages, 5 figures, 1 tabl

    Analyzing the Impact of Spatio-Temporal Sensor Resolution on Player Experience in Augmented Reality Games

    Get PDF
    Along with automating everyday tasks of human life, smartphones have become one of the most popular devices to play video games on due to their interactivity. Smartphones are embedded with various sensors which enhance their ability to adopt new new interaction techniques for video games. These integrated sen- sors, such as motion sensors or location sensors, make the device able to adopt new interaction techniques that enhance usability. However, despite their mobility and embedded sensor capacity, smartphones are limited in processing power and display area compared to desktop computer consoles. When it comes to evaluat- ing Player Experience (PX), players might not have as compelling an experience because the rich graphics environments that a desktop computer can provide are absent on a smartphone. A plausible alternative in this regard can be substituting the virtual game world with a real world game board, perceived through the device camera by rendering the digital artifacts over the camera view. This technology is widely known as Augmented Reality (AR). Smartphone sensors (e.g. GPS, accelerometer, gyro-meter, compass) have enhanced the capability for deploying Augmented Reality technology. AR has been applied to a large number of smartphone games including shooters, casual games, or puzzles. Because AR play environments are viewed through the camera, rendering the digital artifacts consistently and accurately is crucial because the digital characters need to move with respect to sensed orientation, then the accelerometer and gyroscope need to provide su ciently accurate and precise readings to make the game playable. In particular, determining the pose of the camera in space is vital as the appropriate angle to view the rendered digital characters are determined by the pose of the camera. This defines how well the players will be able interact with the digital game characters. Depending in the Quality of Service (QoS) of these sensors, the Player Experience (PX) may vary as the rendering of digital characters are affected by noisy sensors causing a loss of registration. Confronting such problem while developing AR games is di cult in general as it requires creating wide variety of game types, narratives, input modalities as well as user-testing. Moreover, current AR games developers do not have any specific guidelines for developing AR games, and concrete guidelines outlining the tradeoffs between QoS and PX for different genres and interaction techniques are required. My dissertation provides a complete view (a taxonomy) of the spatio-temporal sensor resolution depen- dency of the existing AR games. Four user experiments have been conducted and one experiment is proposed to validate the taxonomy and demonstrate the differential impact of sensor noise on gameplay of different genres of AR games in different aspect of PX. This analysis is performed in the context of a novel instru- mentation technology, which allows the controlled manipulation of QoS on position and orientation sensors. The experimental outcome demonstrated how the QoS of input sensor noise impacts the PX differently while playing AR game of different genre and the key elements creating this differential impact are - the input modality, narrative and game mechanics. Later, concrete guidelines are derived to regulate the sensor QoS as complete set of instructions to develop different genres or AR games

    An integrated wireless communication architecture for maritime sector

    Get PDF
    The rapid evolution of terrestrial wireless systems has brought mobile users more and more desired communication services. Maritime customers are asking for the same, such as the concepts of “Broadband at Sea” and “Maritime Internet”. Quite a lot of research work has focused on the development of new and better maritime communication technologies, but less attention has been paid on interworking of multiple maritime wireless networks or on satisfying service provisioning. To address this, an integrated wireless Communication Architecture for Maritime Sector (CAMS) has been introduced in this article. CAMS is aimed at 1) granting maritime customers uninterrupted connectivity through the best available network and 2) providing them with the best-provisioned communication services in terms of mobility, security and Quality of Experience (QoE). To address mobility challenge, the IEEE 802.21 standard is recommended to be used in CAMS in order to achieve seamless handover. CAMS provides application-level QoE support attending to the limited communication resources (e.g. bandwidth) at sea. Certain security considerations have also been proposed to supplement this architecture

    Investigating the Usability and Quality of Experience of Mobile Video-Conferencing Apps Among Bandwidth-Constrained Users in South Africa

    Get PDF
    In response to Covid-19 and global lockdowns, we have seen a surge in video-conferencing tools' usage to enable people to work from home and stay connected to family and friends. Although understanding the performance and the perceived quality of experience for users with bandwidth caps and poor internet connections could guide the design of video-conferencing apps, the usability of video-conferencing applications have been severely overlooked in developing countries like South Africa, where one-third of adults rely on mobile devices to access the internet and where the per-gigabyte data cost is some of the most expensive in Africa. Considering these numbers, we conduct a two-prong study where 1) we measure bandwidth consumption of different Android apps through bandwidth measurement experiments and 2) we conduct interviews with bandwidth-constrained users to better understand their perceptions of mobile videoconferencing apps. The key benefit of this study will be to inform organisations that seek to be inclusive about these tools' relative usability by letting them know about the factors influencing users' quality of experience
    • …
    corecore