1,051 research outputs found

    Integration of torque blending and slip control using nonlinear model predictive control

    Get PDF
    Antilock Braking System (ABS) is an important active safety feature in preventing accidents during emergency braking. Electrified vehicles which include both hydraulic and regenerative braking systems provide the opportunity to implement brake torque blending during slip control operation. This study evaluates the design and implementation of a new torque allocation algorithm using a Nonlinear Model Predictive Control (NMPC) strategy that can run in real-time, with results showing that wheel-locking can be prevented while also permitting for energy recuperation

    A state-of-the-art review on torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains

    Get PDF
    © 2019, Levrotto and Bella. All rights reserved. Electric vehicles are the future of private passenger transportation. However, there are still several technological barriers that hinder the large scale adoption of electric vehicles. In particular, their limited autonomy motivates studies on methods for improving the energy efficiency of electric vehicles so as to make them more attractive to the market. This paper provides a concise review on the current state-of-the-art of torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains (FEVIADs). Starting from the operating principles, which include the "control allocation" problem, the peculiarities of each proposed solution are illustrated. All the existing techniques are categorized based on a selection of parameters deemed relevant to provide a comprehensive overview and understanding of the topic. Finally, future concerns and research perspectives for FEVIAD are discussed

    Model Predictive torque vectoring control for electric vehicles near the limits of handling

    Get PDF
    In this paper we propose a constrained optimal control architecture to stabilize a vehicle near the limit of lateral acceleration using the rear axle electric torque vectoring configuration of an electric vehicle. A nonlinear vehicle and tyre model is employed to find reference steady-state cornering conditions as well as to design a linear Model Predictive Control (MPC) strategy using the rear wheels' slip ratios as input. A Sliding Mode Slip Controller then calculates the necessary motor torques according to the requested wheel slip ratios. After analysing the relative trade-offs between performance and computational effort for the MPC strategy, we validate the controller and compare it against a simpler unconstrained optimal control strategy in a high fidelity simulation environment
    • …
    corecore