8,212 research outputs found

    Temporal Dynamics of Binocular Disparity Processing with Corticogeniculate Interactions

    Full text link
    A neural model is developed to probe how corticogeniculate feedback may contribute to the dynamics of binocular vision. Feedforward and feedback interactions among retinal, lateral geniculate, and cortical simple and complex cells are used to simulate psychophysical and neurobiological data concerning the dynamics of binocular disparity processing, including correct registration of disparity in response to dynamically changing stimuli, binocular summation of weak stimuli, and fusion of anticorrelated stimuli when they are delayed, but not when they are simultaneous. The model exploits dynamic rebounds between opponent ON and OFF cells that are due to imbalances in habituative transmitter gates. It shows how corticogeniculate feedback can carry out a top-down matching process that inhibits incorrect disparity response and reduces persistence of previously correct responses to dynamically changing displays.Air Force Office of scientific Research (F49620-92-J-0499, F49620-92-J-0334, F49620-92-J-0225); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-4015); Natioanl Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-0657

    A Neural Model of First-order and Second-order Motion Perception and Magnocellular Dynamics

    Full text link
    A neural model of motion perception simulates psychophysical data. concerning first-order and second-order motion stimuli, including the reversal of perceived motion direction with distance from the stimulus (I display), and data about directional judgments as a function of relative spatial phase or spatial and temporal frequency. Many other second-order motion percepts that have been ascribed to a second non-Fourier processing stream can also be explained in the model by interactions between ON and OFF cells within a single, neurobiologically interpreted magnocellular processing stream. Yet other percepts may be traced to interactions between form and motion processing streams, rather than to processing within multiple motion processing strea.ms. The model hereby explains why monkeys with lesions of the parvocellular layers, but not the magnocellular layers, of the lateral geniculate nucleus (LGN) are capable of detecting the correct direction of second-order motion, why most cells in area MT are sensitive to both first-order and second-order motion, and why after APB injection selectively blocks retinal ON bipolar cells, cortical cells are sensitive only to the motion of a moving bright bar's trailing edge. Magnoccllular LGN cells show relatively transient responses while parvoccllular LGN cells show relatively sustained responses. Correspondingly, the model bases its directional estimates on the outputs of model ON and OFF transient cells that are organized in opponent circuits wherein antagonistic rebounds occur in response to stimmulus offset. Center-surround interactions convert these ON and OFF outpr1ts into responses of lightening and darkening cells that are sensitive both to direct inputs and to rebound responses in their receptive field centers and surrounds. The total pattern of activity increments and decrements is used by subsequent processing stages (spatially short-range filters, competitive interactions, spatially long-range filters, and directional grouping cells) to dntermine the perceived direction of motion

    Object Detection Through Exploration With A Foveated Visual Field

    Get PDF
    We present a foveated object detector (FOD) as a biologically-inspired alternative to the sliding window (SW) approach which is the dominant method of search in computer vision object detection. Similar to the human visual system, the FOD has higher resolution at the fovea and lower resolution at the visual periphery. Consequently, more computational resources are allocated at the fovea and relatively fewer at the periphery. The FOD processes the entire scene, uses retino-specific object detection classifiers to guide eye movements, aligns its fovea with regions of interest in the input image and integrates observations across multiple fixations. Our approach combines modern object detectors from computer vision with a recent model of peripheral pooling regions found at the V1 layer of the human visual system. We assessed various eye movement strategies on the PASCAL VOC 2007 dataset and show that the FOD performs on par with the SW detector while bringing significant computational cost savings.Comment: An extended version of this manuscript was published in PLOS Computational Biology (October 2017) at https://doi.org/10.1371/journal.pcbi.100574

    A Neural Model of Surface Perception: Lightness, Anchoring, and Filling-in

    Full text link
    This article develops a neural model of how the visual system processes natural images under variable illumination conditions to generate surface lightness percepts. Previous models have clarified how the brain can compute the relative contrast of images from variably illuminate scenes. How the brain determines an absolute lightness scale that "anchors" percepts of surface lightness to us the full dynamic range of neurons remains an unsolved problem. Lightness anchoring properties include articulation, insulation, configuration, and are effects. The model quantatively simulates these and other lightness data such as discounting the illuminant, the double brilliant illusion, lightness constancy and contrast, Mondrian contrast constancy, and the Craik-O'Brien-Cornsweet illusion. The model also clarifies the functional significance for lightness perception of anatomical and neurophysiological data, including gain control at retinal photoreceptors, and spatioal contrast adaptation at the negative feedback circuit between the inner segment of photoreceptors and interacting horizontal cells. The model retina can hereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A later model cortical processing stages, boundary representations gate the filling-in of surface lightness via long-range horizontal connections. Variants of this filling-in mechanism run 100-1000 times faster than diffusion mechanisms of previous biological filling-in models, and shows how filling-in can occur at realistic speeds. A new anchoring mechanism called the Blurred-Highest-Luminance-As-White (BHLAW) rule helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural images under variable lighting conditions.Air Force Office of Scientific Research (F49620-01-1-0397); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); Office of Naval Research (N00014-01-1-0624

    Laminar Cortical Dynamics of 3D Surface Perception: Stratification, transparency, and Neon Color Spreading

    Get PDF
    How does the laminar organization of cortical circuitry in areas VI and V2 give rise to 3D percepts of stratification, transparency, and neon color spreading in response to 2D pictures and 3D scenes? Psychophysical experiments have shown that such 3D percepts are sensitive to whether contiguous image regions have the same relative contrast polarity (dark-light or lightdark), yet long-range perceptual grouping is known to pool over opposite contrast polarities. The ocularity of contiguous regions is also critical for neon color spreading: Having different ocularity despite the contrast relationship that favors neon spreading blocks the spread. In addition, half visible points in a stereogram can induce near-depth transparency if the contrast relationship favors transparency in the half visible areas. It thus seems critical to have the whole contrast relationship in a monocular configuration, since splitting it between two stereogram images cancels the effect. What adaptive functions of perceptual grouping enable it to both preserve sensitivity to monocular contrast and also to pool over opposite contrasts? Aspects of cortical development, grouping, attention, perceptual learning, stereopsis and 3D planar surface perception have previously been analyzed using a 3D LAMINART model of cortical areas VI, V2, and V4. The present work consistently extends this model to show how like-polarity competition between VI simple cells in layer 4 may be combined with other LAMINART grouping mechanisms, such as cooperative pooling of opposite polarities at layer 2/3 complex cells. The model also explains how the Metelli Rules can lead to transparent percepts, how bistable transparency percepts can arise in which either surface can be perceived as transparent, and how such a transparency reversal can be facilitated by an attention shift. The like-polarity inhibition prediction is consistent with lateral masking experiments in which two f1anking Gabor patches with the same contrast polarity as the target increase the target detection threshold when they approach the target. It is also consistent with LAMINART simulations of cortical development. Other model explanations and testable predictions will also be presented.Air Force Office of Naval Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624
    • …
    corecore