271 research outputs found

    Static and dynamic properties of synaptic transmission at the cyto-neural junction of frog labyrinth posterior canal

    Get PDF
    The properties of synaptic transmission have been studied at the cyto-neural junction of the frog labyrinth posterior canal by examining excitatory postsynaptic potential (EPSP) activity recorded intraaxonally from the afferent nerve after abolishing spike firing by tetrodotoxin. The waveform, amplitude, and rate of occurrence of the EPSPs have been evaluated by means of a procedure of fluctuation analysis devised to continuously monitor these parameters, at rest as well as during stimulation of the semicircular canal by sinusoidal rotation at 0.1 Hz, with peak accelerations ranging from 8 to 87 deg.s-2. Responses to excitatory and inhibitory accelerations were quantified in terms of maximum and minimum EPSP rates, respectively, as well as total numbers of EPSPs occurring during the excitatory and inhibitory half cycles. Excitatory responses were systematically larger than inhibitory ones (asymmetry). Excitatory responses were linearly related either to peak acceleration or to its logarithm, and the same occurred for inhibitory responses. In all units examined, the asymmetry of the response yielded nonlinear two-sided input-output intensity functions. Silencing of EPSPs during inhibition (rectification) was never observed. Comparison of activity during the first cycle of rotation with the average response over several cycles indicated that variable degrees of adaptation (up to 48%) characterize the excitatory response, whereas no consistent adaptation was observed in the inhibitory response. All fibers appeared to give responses nearly in phase with angular velocity, at 0.1 Hz, although the peak rates generally anticipated by a few degrees the peak angular velocity. From the data presented it appears that asymmetry, adaptation, and at least part of the phase lead in afferent nerve response are of presynaptic origin, whereas rectification and possible further phase lead arise at the encoder. To confirm these conclusions a simultaneous though limited study of spike firing and EPSP activity has been attempted in a few fibers

    Differential Dynamic Signal Processing in Frog Vestibular Neurons

    Get PDF

    Reverse engineering the vestibular system

    Get PDF

    Microgravity affects the hair cell ionic currents of the frog semicircular canals

    Get PDF
    The effects of microgravity on the biophysical properties of frog labyrinthine hair cells have been examined by analyzing calcium and potassium currents in dissociated cells, using the patch-clamp technique. The entire, anaesthetized frog was exposed to vector-free gravity in a “random positioning machine (RPM)” and the functional modifications induced on single hair cells, dissected from the crista ampullaris, were subsequently studied in vitro. The major targets of microgravity exposure were the calcium/potassium current system and the IA (the fast transient potassium current) kinetic mechanism. The peak amplitude of the voltage-dependent calcium current, ICa, was significantly reduced in microgravity conditioned cells. The amplitude of the delayed potassium current, IKD (a complex of two different currents: IKV and IKCa), was drastically reduced, mostly in its IKCa component. Microgravity also affected IKD kinetics by shifting the steady-state inactivation curve towards negative potentials and increasing the sensitivity of inactivation removal to voltage. As concerns the IA, the I-V and steady–state inactivation curves were indistinguishable under normo- or microgravity conditions; conversely, IA decay systematically displayed a two-exponential time course and longer time constants in microgravity, thus potentially providing a larger K+ outward charge; furthermore, IA inactivation removal at -70 mV was slowed down. Stimulation in the RPM machine under normogravity conditions (to isolate the pure microgravity effects from those of the mere canal stimulation, due to the continuous rotation of the animal required to generate the artificial microgravity environment) resulted in minor effects on IKD and, occasionally, in incomplete IA inactivation at -40 mV. Reduced calcium influx and increased K+ repolarizing charge, in a variable mix according to the momentary membrane potential shifts, constitute a likely cause for the failure in the afferent mEPSP discharge at the cytoneural junction and for the reduced spike rate in the afferent fibers observed in the intact labyrinth after similar microgravity conditioning

    The Frog Vestibular System as a Model for Lesion-Induced Plasticity: Basic Neural Principles and Implications for Posture Control

    Get PDF
    Studies of behavioral consequences after unilateral labyrinthectomy have a long tradition in the quest of determining rules and limitations of the central nervous system (CNS) to exert plastic changes that assist the recuperation from the loss of sensory inputs. Frogs were among the first animal models to illustrate general principles of regenerative capacity and reorganizational neural flexibility after a vestibular lesion. The continuous successful use of the latter animals is in part based on the easy access and identifiability of nerve branches to inner ear organs for surgical intervention, the possibility to employ whole brain preparations for in vitro studies and the limited degree of freedom of postural reflexes for quantification of behavioral impairments and subsequent improvements. Major discoveries that increased the knowledge of post-lesional reactive mechanisms in the CNS include alterations in vestibular commissural signal processing and activation of cooperative changes in excitatory and inhibitory inputs to disfacilitated neurons. Moreover, the observed increase of synaptic efficacy in propriospinal circuits illustrates the importance of limb proprioceptive inputs for postural recovery. Accumulated evidence suggests that the lesion-induced neural plasticity is not a goal-directed process that aims toward a meaningful restoration of vestibular reflexes but rather attempts a survival of those neurons that have lost their excitatory inputs. Accordingly, the reaction mechanism causes an improvement of some components but also a deterioration of other aspects as seen by spatio-temporally inappropriate vestibulo-motor responses, similar to the consequences of plasticity processes in various sensory systems and species. The generality of the findings indicate that frogs continue to form a highly amenable vertebrate model system for exploring molecular and physiological events during cellular and network reorganization after a loss of vestibular function

    Spinal corollary discharge modulates motion sensing during vertebrate locomotion

    Get PDF
    During active movements, neural replicas of the underlying motor commands may assist in adapting motion-detecting sensory systems to an animal's own behaviour. The transmission of such motor efference copies to the mechanosensory periphery offers a potential predictive substrate for diminishing sensory responsiveness to self-motion during vertebrate locomotion. Here, using semi-isolated in vitro preparations of larval Xenopus, we demonstrate that shared efferent neural pathways to hair cells of vestibular endorgans and lateral line neuromasts express cyclic impulse bursts during swimming that are directly driven by spinal locomotor circuitry. Despite common efferent innervation and discharge patterns, afferent signal encoding at the two mechanosensory peripheries is influenced differentially by efference copy signals, reflecting the different organization of body/water motion-detecting processes in the vestibular and lateral line systems. The resultant overall gain reduction in sensory signal encoding in both cases, which likely prevents overstimulation, constitutes an adjustment to increased stimulus magnitudes during locomotion

    A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV

    Get PDF
    Benign Paroxysmal Positional Vertigo (BPPV) is a mechanical disorder of the vestibular system in which calcite particles called otoconia interfere with the mechanical functioning of the fluid-filled semicircular canals normally used to sense rotation. Using hydrodynamic models, we examine the two mechanisms proposed by the medical community for BPPV: cupulolithiasis, in which otoconia attach directly to the cupula (a sensory membrane), and canalithiasis, in which otoconia settle through the canals and exert a fluid pressure across the cupula. We utilize known hydrodynamic calculations and make reasonable geometric and physical approximations to derive an expression for the transcupular pressure ΔPc\Delta P_c exerted by a settling solid particle in canalithiasis. By tracking settling otoconia in a two-dimensional model geometry, the cupular volume displacement and associated eye response (nystagmus) can be calculated quantitatively. Several important features emerge: 1) A pressure amplification occurs as otoconia enter a narrowing duct; 2) An average-sized otoconium requires approximately five seconds to settle through the wide ampulla, where ΔPc\Delta P_c is not amplified, which suggests a mechanism for the observed latency of BPPV; and 3) An average-sized otoconium beginning below the center of the cupula can cause a volumetric cupular displacement on the order of 30 pL, with nystagmus of order 22^\circ/s, which is approximately the threshold for sensation. Larger cupular volume displacement and nystagmus could result from larger and/or multiple otoconia.Comment: 15 pages, 5 Figures updated, to be published in J. Biomechanic

    Electrophysiological profile and monosynaptic circuitry of efferent vestibular nucleus neurons

    Get PDF
    As with other sensory modalities, the vestibular system recruits efferent circuitry to transport information from the central nervous system (CNS) to the sensory periphery. This efferent vestibular system (EVS) originates in the brainstem and terminates on vestibular hair cells and afferent fibres in the semicircular canals and otolith organs. Understanding how this central component outputs to the vestibular organs, and mediates motor and vestibular coordination, could potentially impact clinical treatment of vestibular disorders. Previous EVS work has primarily focused on the anatomy, pharmacology, synaptic mechanisms, and peripheral effects of efferent vestibular nucleus (EVN) activation. Although this work is fundamental to understanding this system and its mechanism of action, the behavioural function of the EVS is yet to be ascribed. For this, we need to appreciate the physiology of EVN neurons, and their context of activation within the CNS. In this thesis, I characterise the electrophysiological profile of EVN neurons, and trace their direct monosynaptic circuitry. My methodology includes whole-cell current- and voltage- clamp electrophysiology, and glycoproteindeficient rabies virus tracing techniques. Using these, I enrich understanding of EVN action, and hint at potential functional roles from their CNS partners. The data presented in this thesis provides novel insights into the EVS. EVN neurons are characterised with a homogeneous output, but a heterogeneous synaptic input profile. Inputs to the EVN originate from diverse areas in the brainstem and cortex. These findings suggest that the EVN modulates vestibular end organs in multiple different behavioural contexts. This work forms the basis of subsequent EVS behavioural investigations such as loss of function experiments targeting input regions via optogentic means and subsequent EVS recordings, or silencing of EVN activity and subsequent behavioural testing. Collectively, my results, these future directions, and the existing body of EVS literature, brings us closer than ever to understanding and ascribing a functional role for the EVS

    Brainstem plasticity in vestibular motion-processing sensorimotor networks

    Get PDF
    corecore