237 research outputs found

    Interactive ubiquitous displays based on steerable projection

    Get PDF
    The ongoing miniaturization of computers and their embedding into the physical environment require new means of visual output. In the area of Ubiquitous Computing, flexible and adaptable display options are needed in order to enable the presentation of visual content in the physical environment. In this dissertation, we introduce the concepts of Display Continuum and Virtual Displays as new means of human-computer interaction. In this context, we present a realization of a Display Continuum based on steerable projection, and we describe a number of different interaction methods for manipulating this Display Continuum and the Virtual Displays placed on it.Mit zunehmender Miniaturisierung der Computer und ihrer Einbettung in der physikalischen Umgebung werden neue Arten der visuellen Ausgabe notwendig. Im Bereich des Ubiquitous Computing (Rechnerallgegenwart) werden flexible und anpassungsfĂ€hige Displays benötigt, um eine Anzeige von visuellen Inhalten unmittelbar in der physikalischen Umgebung zu ermöglichen. In dieser Dissertation fĂŒhren wir das Konzept des Display-Kontinuums und der Virtuellen Displays als Instrument der Mensch-Maschine-Interaktion ein. In diesem Zusammenhang prĂ€sentieren wir eine mögliche Display-Kontinuum-Realisierung, die auf der Verwendung steuerbarer Projektion basiert, und wir beschreiben mehrere verschiedene Interaktionsmethoden, mit denen man das Display-Kontinuum und die darauf platzierten Virtuellen Displays steuern kann

    Sensor fusion with Gaussian processes

    Get PDF
    This thesis presents a new approach to multi-rate sensor fusion for (1) user matching and (2) position stabilisation and lag reduction. The Microsoft Kinect sensor and the inertial sensors in a mobile device are fused with a Gaussian Process (GP) prior method. We present a Gaussian Process prior model-based framework for multisensor data fusion and explore the use of this model for fusing mobile inertial sensors and an external position sensing device. The Gaussian Process prior model provides a principled mechanism for incorporating the low-sampling-rate position measurements and the high-sampling-rate derivatives in multi-rate sensor fusion, which takes account of the uncertainty of each sensor type. We explore the complementary properties of the Kinect sensor and the built-in inertial sensors in a mobile device and apply the GP framework for sensor fusion in the mobile human-computer interaction area. The Gaussian Process prior model-based sensor fusion is presented as a principled probabilistic approach to dealing with position uncertainty and the lag of the system, which are critical for indoor augmented reality (AR) and other location-aware sensing applications. The sensor fusion helps increase the stability of the position and reduce the lag. This is of great benefit for improving the usability of a human-computer interaction system. We develop two applications using the novel and improved GP prior model. (1) User matching and identification. We apply the GP model to identify individual users, by matching the observed Kinect skeletons with the sensed inertial data from their mobile devices. (2) Position stabilisation and lag reduction in a spatially aware display application for user performance improvement. We conduct a user study. Experimental results show the improved accuracy of target selection, and reduced delay from the sensor fusion system, allowing the users to acquire the target more rapidly, and with fewer errors in comparison with the Kinect filtered system. They also reported improved performance in subjective questions. The two applications can be combined seamlessly in a proxemic interaction system as identification of people and their positions in a room-sized environment plays a key role in proxemic interactions

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, fĂŒhren zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhĂ€rent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natĂŒrliche Interaktionstechniken als hilfreich fĂŒr die Datenanalyse erwiesen. DarĂŒber hinaus spielt in solchen AnwendungsfĂ€llen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext fĂŒr die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung gefĂŒhrt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion fĂŒr diese oft komplexen Systeme. In meiner Dissertation beschĂ€ftige ich mich mit dieser Herausforderung, indem ich die Interaktion fĂŒr immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von rĂ€umlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann rĂ€umliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen fĂŒr immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. FĂŒr die zweite Frage untersuche ich, wie insbesondere die rĂ€umliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit rĂ€umlichen GerĂ€ten im Vergleich zur Touch-Eingabe, die Verwendung zusĂ€tzlicher mobiler GerĂ€te als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darĂŒber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie rĂ€umliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstĂŒtzen können

    Haptic Media Scenes

    Get PDF
    The aim of this thesis is to apply new media phenomenological and enactive embodied cognition approaches to explain the role of haptic sensitivity and communication in personal computer environments for productivity. Prior theory has given little attention to the role of haptic senses in influencing cognitive processes, and do not frame the richness of haptic communication in interaction design—as haptic interactivity in HCI has historically tended to be designed and analyzed from a perspective on communication as transmissions, sending and receiving haptic signals. The haptic sense may not only mediate contact confirmation and affirmation, but also rich semiotic and affective messages—yet this is a strong contrast between this inherent ability of haptic perception, and current day support for such haptic communication interfaces. I therefore ask: How do the haptic senses (touch and proprioception) impact our cognitive faculty when mediated through digital and sensor technologies? How may these insights be employed in interface design to facilitate rich haptic communication? To answer these questions, I use theoretical close readings that embrace two research fields, new media phenomenology and enactive embodied cognition. The theoretical discussion is supported by neuroscientific evidence, and tested empirically through case studies centered on digital art. I use these insights to develop the concept of the haptic figura, an analytical tool to frame the communicative qualities of haptic media. The concept gauges rich machine- mediated haptic interactivity and communication in systems with a material solution supporting active haptic perception, and the mediation of semiotic and affective messages that are understood and felt. As such the concept may function as a design tool for developers, but also for media critics evaluating haptic media. The tool is used to frame a discussion on opportunities and shortcomings of haptic interfaces for productivity, differentiating between media systems for the hand and the full body. The significance of this investigation is demonstrating that haptic communication is an underutilized element in personal computer environments for productivity and providing an analytical framework for a more nuanced understanding of haptic communication as enabling the mediation of a range of semiotic and affective messages, beyond notification and confirmation interactivity

    Interaction for Immersive Analytics

    Get PDF
    International audienceIn this chapter, we briefly review the development of natural user interfaces and discuss their role in providing human-computer interaction that is immersive in various ways. Then we examine some opportunities for how these technologies might be used to better support data analysis tasks. Specifically, we review and suggest some interaction design guidelines for immersive analytics. We also review some hardware setups for data visualization that are already archetypal. Finally, we look at some emerging system designs that suggest future directions

    Interactive Visualization Lenses:: Natural Magic Lens Interaction for Graph Visualization

    Get PDF
    Information visualization is an important research field concerned with making sense and inferring knowledge from data collections. Graph visualizations are specific techniques for data representation relevant in diverse application domains among them biology, software-engineering, and business finance. These data visualizations benefit from the display space provided by novel interactive large display environments. However, these environments also cause new challenges and result in new requirements regarding the need for interaction beyond the desktop and according redesign of analysis tools. This thesis focuses on interactive magic lenses, specialized locally applied tools that temporarily manipulate the visualization. These may include magnification of focus regions but also more graph-specific functions such as pulling in neighboring nodes or locally reducing edge clutter. Up to now, these lenses have mostly been used as single-user, single-purpose tools operated by mouse and keyboard. This dissertation presents the extension of magic lenses both in terms of function as well as interaction for large vertical displays. In particular, this thesis contributes several natural interaction designs with magic lenses for the exploration of graph data in node-link visualizations using diverse interaction modalities. This development incorporates flexible switches between lens functions, adjustment of individual lens properties and function parameters, as well as the combination of lenses. It proposes interaction techniques for fluent multi-touch manipulation of lenses, controlling lenses using mobile devices in front of large displays, and a novel concept of body-controlled magic lenses. Functional extensions in addition to these interaction techniques convert the lenses to user-configurable, personal territories with use of alternative interaction styles. To create the foundation for this extension, the dissertation incorporates a comprehensive design space of magic lenses, their function, parameters, and interactions. Additionally, it provides a discussion on increased embodiment in tool and controller design, contributing insights into user position and movement in front of large vertical displays as a result of empirical investigations and evaluations.Informationsvisualisierung ist ein wichtiges Forschungsfeld, das das Analysieren von Daten unterstĂŒtzt. Graph-Visualisierungen sind dabei eine spezielle Variante der DatenreprĂ€sentation, deren Nutzen in vielerlei AnwendungsfĂ€llen zum Einsatz kommt, u.a. in der Biologie, Softwareentwicklung und Finanzwirtschaft. Diese Datendarstellungen profitieren besonders von großen Displays in neuen Displayumgebungen. Jedoch bringen diese Umgebungen auch neue Herausforderungen mit sich und stellen Anforderungen an Nutzerschnittstellen jenseits der traditionellen AnsĂ€tze, die dadurch auch Anpassungen von Analysewerkzeugen erfordern. Diese Dissertation befasst sich mit interaktiven „Magischen Linsen“, spezielle lokal-angewandte Werkzeuge, die temporĂ€r die Visualisierung zur Analyse manipulieren. Dabei existieren zum Beispiel VergrĂ¶ĂŸerungslinsen, aber auch Graph-spezifische Manipulationen, wie das Anziehen von Nachbarknoten oder das Reduzieren von KantenĂŒberlappungen im lokalen Bereich. Bisher wurden diese Linsen vor allem als Werkzeug fĂŒr einzelne Nutzer mit sehr spezialisiertem Effekt eingesetzt und per Maus und Tastatur bedient. Die vorliegende Doktorarbeit prĂ€sentiert die Erweiterung dieser magischen Linsen, sowohl in Bezug auf die FunktionalitĂ€t als auch fĂŒr die Interaktion an großen, vertikalen Displays. Insbesondere trĂ€gt diese Dissertation dazu bei, die Exploration von Graphen mit magischen Linsen durch natĂŒrliche Interaktion mit unterschiedlichen ModalitĂ€ten zu unterstĂŒtzen. Dabei werden flexible Änderungen der Linsenfunktion, Anpassungen von individuellen Linseneigenschaften und Funktionsparametern, sowie die Kombination unterschiedlicher Linsen ermöglicht. Es werden Interaktionstechniken fĂŒr die natĂŒrliche Manipulation der Linsen durch Multitouch-Interaktion, sowie das Kontrollieren von Linsen durch MobilgerĂ€te vor einer Displaywand vorgestellt. Außerdem wurde ein neuartiges Konzept körpergesteuerter magischer Linsen entwickelt. Funktionale Erweiterungen in Kombination mit diesen Interaktionskonzepten machen die Linse zu einem vom Nutzer einstellbaren, persönlichen Arbeitsbereich, der zudem alternative Interaktionsstile erlaubt. Als Grundlage fĂŒr diese Erweiterungen stellt die Dissertation eine umfangreiche analytische Kategorisierung bisheriger Forschungsarbeiten zu magischen Linsen vor, in der Funktionen, Parameter und Interaktion mit Linsen eingeordnet werden. ZusĂ€tzlich macht die Arbeit Vor- und Nachteile körpernaher Interaktion fĂŒr Werkzeuge bzw. ihre Steuerung zum Thema und diskutiert dabei Nutzerposition und -bewegung an großen DisplaywĂ€nden belegt durch empirische Nutzerstudien

    Eye, Head and Torso Coordination During Gaze Shifts in Virtual Reality

    Get PDF
    Humans perform gaze shifts naturally through a combination of eye, head and body movements. Although gaze has been long studied as input modality for interaction, this has previously ignored the coordination of the eyes, head and body. This article reports a study of gaze shifts in virtual reality (VR) aimed to address the gap and inform design. We identify general eye, head and torso coordination patterns and provide an analysis of the relative movements' contribution and temporal alignment. We quantify effects of target distance, direction and user posture, describe preferred eye-in-head motion ranges, and identify a high variability in head movement tendency. Study insights lead us to propose gaze zones that reflect different levels of contribution from eye, head and body. We discuss design implications for HCI and VR, and in conclusion argue to treat gaze as multimodal input, and eye, head and body movement as synergetic in interaction design

    Sensor-based user interface concepts for continuous, around-device and gestural interaction on mobile devices

    Get PDF
    A generally observable trend of the past 10 years is that the amount of sensors embedded in mobile devices such as smart phones and tablets is rising steadily. Arguably, the available sensors are mostly underutilized by existing mobile user interfaces. In this dissertation, we explore sensor-based user interface concepts for mobile devices with the goal of making better use of the available sensing capabilities on mobile devices as well as gaining insights on the types of sensor technologies that could be added to future mobile devices. We are particularly interested how novel sensor technologies could be used to implement novel and engaging mobile user interface concepts. We explore three particular areas of interest for research into sensor-based user interface concepts for mobile devices: continuous interaction, around-device interaction and motion gestures. For continuous interaction, we explore the use of dynamic state-space systems to implement user interfaces based on a constant sensor data stream. In particular, we examine zoom automation in tilt-based map scrolling interfaces. We show that although fully automatic zooming is desirable in certain situations, adding a manual override capability of the zoom level (Semi-Automatic Zooming) will increase the usability of such a system, as shown through a decrease in task completion times and improved user ratings of user study. The presented work on continuous interaction also highlights how the sensors embedded in current mobile devices can be used to support complex interaction tasks. We go on to introduce the concept of Around-Device Interaction (ADI). By extending the interactive area of the mobile device to its entire surface and the physical volume surrounding it we aim to show how the expressivity and possibilities of mobile input can be improved this way. We derive a design space for ADI and evaluate three prototypes in this context. HoverFlow is a prototype allowing coarse hand gesture recognition around a mobile device using only a simple set of sensors. PalmSpace a prototype exploring the use of depth cameras on mobile devices to track the user's hands in direct manipulation interfaces through spatial gestures. Lastly, the iPhone Sandwich is a prototype supporting dual-sided pressure-sensitive multi-touch interaction. Through the results of user studies, we show that ADI can lead to improved usability for mobile user interfaces. Furthermore, the work on ADI contributes suggestions for the types of sensors could be incorporated in future mobile devices to expand the input capabilities of those devices. In order to broaden the scope of uses for mobile accelerometer and gyroscope data, we conducted research on motion gesture recognition. With the aim of supporting practitioners and researchers in integrating motion gestures into their user interfaces at early development stages, we developed two motion gesture recognition algorithms, the $3 Gesture Recognizer and Protractor 3D that are easy to incorporate into existing projects, have good recognition rates and require a low amount of training data. To exemplify an application area for motion gestures, we present the results of a study on the feasibility and usability of gesture-based authentication. With the goal of making it easier to connect meaningful functionality with gesture-based input, we developed Mayhem, a graphical end-user programming tool for users without prior programming skills. Mayhem can be used to for rapid prototyping of mobile gestural user interfaces. The main contribution of this dissertation is the development of a number of novel user interface concepts for sensor-based interaction. They will help developers of mobile user interfaces make better use of the existing sensory capabilities of mobile devices. Furthermore, manufacturers of mobile device hardware obtain suggestions for the types of novel sensor technologies that are needed in order to expand the input capabilities of mobile devices. This allows the implementation of future mobile user interfaces with increased input capabilities, more expressiveness and improved usability
    • 

    corecore