248,424 research outputs found

    Long-term learning behavior in a recurrent neural network for sound recognition

    Get PDF
    In this paper, the long-term learning properties of an artificial neural network model, designed for sound recognition and computational auditory scene analysis in general, are investigated. The model is designed to run for long periods of time (weeks to months) on low-cost hardware, used in a noise monitoring network, and builds upon previous work by the same authors. It consists of three neural layers, connected to each other by feedforward and feedback excitatory connections. It is shown that the different mechanisms that drive auditory attention emerge naturally from the way in which neural activation and intra-layer inhibitory connections are implemented in the model. Training of the artificial neural network is done following the Hebb principle, dictating that "Cells that fire together, wire together", with some important modifications, compared to standard Hebbian learning. As the model is designed to be on-line for extended periods of time, also learning mechanisms need to be adapted to this. The learning needs to be strongly attention-and saliency-driven, in order not to waste available memory space for sounds that are of no interest to the human listener. The model also implements plasticity, in order to deal with new or changing input over time, without catastrophically forgetting what it already learned. On top of that, it is shown that also the implementation of shortterm memory plays an important role in the long-term learning properties of the model. The above properties are investigated and demonstrated by training on real urban sound recordings

    Computational Modelling of Information Gathering

    Get PDF
    This thesis describes computational modelling of information gathering behaviour under active inference – a framework for describing Bayes optimal behaviour. Under active inference perception, attention and action all serve for same purpose: minimising variational free energy. Variational free energy is an upper bound on surprise and minimising it maximises an agent’s evidence for its survival. An agent achieves this by acquiring information (resolving uncertainty) about the hidden states of the world and uses the acquired information to act on the outcomes it prefers. In this work I placed special emphasis on the resolution of uncertainty about the states of the world. I first created a visual search task called scene construction task. In this task one needs to accumulate evidence for competing hypotheses (different visual scenes) through sequential sampling of a visual scene and categorising it once there is sufficient evidence. I showed that a computational agent attends to the most salient (epistemically valuable) locations in this task. In the next, this task was performed by healthy humans. Healthy people’s exploration strategies provided evidence for uncertainty driven exploration. I also showed how different exploratory behaviours can be characterised using canonical correlation analysis. In the next study I showed how exploration of a visual scene under different instructions could be explained by appealing to the computational mechanisms that may correspond to attention. This entailed manipulating the precision of task irrelevant cues and their hidden causes as a function of instructions. In the final work, I was interested in characterising impulsive behaviour using a patch leaving paradigm. By varying the parameters of the MDP model, I showed that there could be at least three distinct causes of impulsive behaviour, namely a lower depth of planning, a lower capacity to maintain and process information, and an increased perceived value of immediate rewards

    A computer vision model for visual-object-based attention and eye movements

    Get PDF
    This is the post-print version of the final paper published in Computer Vision and Image Understanding. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.This paper presents a new computational framework for modelling visual-object-based attention and attention-driven eye movements within an integrated system in a biologically inspired approach. Attention operates at multiple levels of visual selection by space, feature, object and group depending on the nature of targets and visual tasks. Attentional shifts and gaze shifts are constructed upon their common process circuits and control mechanisms but also separated from their different function roles, working together to fulfil flexible visual selection tasks in complicated visual environments. The framework integrates the important aspects of human visual attention and eye movements resulting in sophisticated performance in complicated natural scenes. The proposed approach aims at exploring a useful visual selection system for computer vision, especially for usage in cluttered natural visual environments.National Natural Science of Founda- tion of Chin
    • …
    corecore