1,834 research outputs found

    Continuum Mechanical Models for Design and Characterization of Soft Robots

    Full text link
    The emergence of ``soft'' robots, whose bodies are made from stretchable materials, has fundamentally changed the way we design and construct robotic systems. Demonstrations and research show that soft robotic systems can be useful in rehabilitation, medical devices, agriculture, manufacturing and home assistance. Increasing need for collaborative, safe robotic devices have combined with technological advances to create a compelling development landscape for soft robots. However, soft robots are not yet present in medical and rehabilitative devices, agriculture, our homes, and many other human-collaborative and human-interactive applications. This gap between promise and practical implementation exists because foundational theories and techniques that exist in rigid robotics have not yet been developed for soft robots. Theories in traditional robotics rely on rigid body displacements via discrete joints and discrete actuators, while in soft robots, kinematic and actuation functions are blended, leading to nonlinear, continuous deformations rather than rigid body motion. This dissertation addresses the need for foundational techniques using continuum mechanics. Three core questions regarding the use of continuum mechanical models in soft robotics are explored: (1) whether or not continuum mechanical models can describe existing soft actuators, (2) which physical phenomena need to be incorporated into continuum mechanical models for their use in a soft robotics context, and (3) how understanding on continuum mechanical phenomena may form bases for novel soft robot architectures. Theoretical modeling, experimentation, and design prototyping tools are used to explore Fiber-Reinforced Elastomeric Enclosures (FREEs), an often-used soft actuator, and to develop novel soft robot architectures based on auxetic behavior. This dissertation develops a continuum mechanical model for end loading on FREEs. This model connects a FREE’s actuation pressure and kinematic configuration to its end loads by considering stiffness of its elastomer and fiber reinforcement. The model is validated against a large experimental data set and compared to other FREE models used by roboticists. It is shown that the model can describe the FREE’s loading in a generalizable manner, but that it is bounded in its peak performance. Such a model can provide the novel function of evaluating the performance of FREE designs under high loading without the costs of building and testing prototypes. This dissertation further explores the influence viscoelasticity, an inherent property of soft polymers, on end loading of FREEs. The viscoelastic model developed can inform soft roboticists wishing to exploit or avoid hysteresis and force reversal. The final section of the dissertations explores two contrasting styles of auxetic metamaterials for their uses in soft robotic actuation. The first metamaterial architecture is composed of beams with distributed compliance, which are placed antagonistic configurations on a variety of surfaces, giving ride to shape morphing behavior. The second metamaterial architecture studied is a ``kirigami’’ sheet with an orthogonal cut pattern, utilizing lumped compliance and strain hardening to permanently deploy from a compact shape to a functional one. This dissertation lays the foundation for design of soft robots by robust physical models, reducing the need for physical prototypes and trial-and-error approaches. The work presented provides tools for systematic exploration of FREEs under loading in a wide range of configurations. The work further develops new concepts for soft actuators based on continuum mechanical modeling of auxetic metamaterials. The work presented expands the available tools for design and development of soft robotic systems, and the available architectures for soft robot actuation.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163236/1/asedal_1.pd

    Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining

    Get PDF
    This study evaluates the machining performance of newly developed modified jatropha oils (MJO1, MJO3 and MJO5), both with and without hexagonal boron nitride (hBN) particles (ranging between 0.05 and 0.5 wt%) during turning of AISI 1045 using minimum quantity lubrication (MQL). The experimental results indicated that, viscosity improved with the increase in MJOs molar ratio and hBN concentration. Excellent tribological behaviours is found to correlated with a better machining performance were achieved by MJO5a with 0.05 wt%. The MJO5a sample showed the lowest values of cutting force, cutting temperature and surface roughness, with a prolonged tool life and less tool wear, qualifying itself to be a potential alternative to the synthetic ester, with regard to the environmental concern

    Dynamics and control of robotic systems for on-orbit objects manipulation

    Get PDF
    Multi-body systems (MSs) are assemblies composed of multiple bodies (either rigid or structurally flexible) connected among each other by means of mechanical joints. In many engineering fields (such as aerospace, aeronautics, robotics, machinery, military weapons and bio-mechanics) a large number of systems (e.g. space robots, aircraft, terrestrial vehicles, industrial machinery, launching systems) can be included in this category. The dynamic characteristics and performance of such complex systems need to be accurately and rapidly analyzed and predicted. Taking this engineering background into consideration, a new branch of study, named as Multi-body Systems Dynamics (MSD), emerged in the 1960s and has become an important research and development area in modern mechanics; it mainly addresses the theoretical modeling, numerical analysis, design optimization and control for complex MSs. The research on dynamics modeling and numerical solving techniques for rigid multi-body systems has relatively matured and perfected through the developments over the past half century. However, for many engineering problems, the rigid multi-body system model cannot meet the requirements in terms of precision. It is then necessary to consider the coupling between the large rigid motions of the MS components and their elastic displacements; thus the study of the dynamics of flexible MSs has gained increasing relevance. The flexible MSD involves many theories and methods, such as continuum mechanics, computational mechanics and nonlinear dynamics, thus implying a higher requirement on the theoretical basis. Robotic on-orbit operations for servicing, repairing or de-orbiting existing satellites are among space mission concepts expected to have a relevant role in a close future. In particular, many studies have been focused on removing significant debris objects from their orbit. While mission designs involving tethers, nets, harpoons or glues are among options studied and analyzed by the scientific and industrial community, the debris removal by means of robotic manipulators seems to be the solution with the longest space experience. In fact, robotic manipulators are now a well-established technology in space applications as they are routinely used for handling and assembling large space modules and for reducing human extravehicular activities on the International Space Station. The operations are generally performed in a tele-operated approach, where the slow motion of the robotic manipulator is controlled by specialized operators on board of the space station or at the ground control center. Grasped objects are usually cooperative, meaning they are capable to re-orient themselves or have appropriate mechanisms for engagement with the end-effectors of the manipulator (i.e. its terminal parts). On the other hand, debris removal missions would target objects which are often non-controlled and lacking specific hooking points. Moreover, there would be a distinctive advantage in terms of cost and reliability to conduct this type of mission profile in a fully autonomous manner, as issues like obstacle avoidance could be more easily managed locally than from a far away control center. Space Manipulator Systems (SMSs) are satellites made of a base platform equipped with one or more robotic arms. A SMS is a floating system because its base is not fixed to the ground like in terrestrial manipulators; therefore, the motion of the robotic arms affects the attitude and position of the base platform and vice versa. This reciprocal influence is denoted as "dynamic coupling" and makes the dynamics modeling and motion planning of a space robot much more complicated than those of fixed-base manipulators. Indeed, SMSs are complex systems whose dynamics modeling requires appropriate theoretical and mathematical tools. The growing importance SMSs are acquiring is due to their operational ductility as they are able to perform complicated tasks such as repairing, refueling, re-orbiting spacecraft, assembling articulated space structures and cleaning up the increasing amount of space debris. SMSs have also been employed in several rendezvous and docking missions. They have also been the object of many studies which verified the possibility to extend the operational life of commercial and scientific satellites by using an automated servicing spacecraft dedicated to repair, refuel and/or manage their failures (e.g. DARPA's Orbital Express and JAXA's ETS VII). Furthermore, Active Debris Removal (ADR) via robotic systems is one of the main concerns governments and space agencies have been facing in the last years. As a result, the grasping and post-grasping operations on non-cooperative objects are still open research areas facing many technical challenges: the target object identification by means of passive or active optical techniques, the estimation of its kinematic state, the design of dexterous robotic manipulators and end-effectors, the multi-body dynamics analysis, the selection of approaching and grasping maneuvers and the post-grasping mission planning are the main open research challenges in this field. The missions involving the use of SMSs are usually characterized by the following typical phases: 1. Orbital approach; 2. Rendez-vous; 3. Robotic arm(s) deployment; 4. Pre-grasping; 5. Grasping and post-grasping operations. This thesis project will focus on the last three. The manuscript is structured as follows: Chapter 1 presents the derivation of a multi-body system dynamics equations further developing them to reach their Kane's formulation; Chapter 2 investigates two different approaches (Particle Swarm Optimization and Machine Learning) dealing with a space manipulator deployment maneuver; Chapter 3 addresses the design of a combined Impedance+PD controller capable of accomplishing the pre-grasping phase goals and Chapter 4 is dedicated to the dynamic modeling of the closed-loop kinematic chain formed by the manipulator and the grasped target object and to the synthesis of a Jacobian Transpose+PD controller for a post-grasping docking maneuver. Finally, the concluding remarks summarize the overall thesis contribution

    Adaptive Tracking Controller for Real-Time Hybrid Simulation

    Get PDF
    Real-time hybrid simulation (RTHS) is a versatile and cost-effective testing method for studying the performance of structures subjected to dynamic loading. RTHS decomposes a structure into partitioned physical and numerical sub-structures that are coupled together through actuation systems. The sub-structuring approach is particularly attractive for studying large-scale problems since it allows for setting up large-scale structures with thousands of degrees of freedom in numerical simulations while specific components can be studied experimentally.The actuator dynamics generate an inevitable time delay in the overall system that affects the accuracy and stability of the simulation. Therefore, developing robust tracking control methodologies are necessary to mitigate these adverse effects. This research presents a state of the art review of tracking controllers for RTHS, and proposes a Conditional Adaptive Time Series (CATS) compensator based on the principles of the Adaptive Time Series compensator (ATS). The accuracy of the proposed controller is evaluated with a benchmark problem of a three-story building with a single degree of freedom (SDOF) in a realistic virtual RTHS (vRTHS). In addition, the accuracy of the proposed method is evaluated for seven numerical integration algorithms suitable for RTHS

    Design, fabrication, and characterization of controllable conducting polymer actuation systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 144-148).The geometric, hierarchal, multifunctional composition of mammalian skeletal muscle and the neuromuscular system consists of actuation elements, length sensors, force sensors, localized energy storage, controlled energy delivery, computational components, and intercommunication pathways. Conducting polymer materials are versatile enough to perform all of the above functions. This work explores the design, characterization, and implementation of three conducting polymer components in building artificial muscle actuation systems: actuators, length sensors, and energy storage. The first systematic strain characterization of polypyrrole actuators at voltages above 1 V for a frequency range of 0.01 Hz to 100 Hz is reported. Material, mechanical, and electrical properties of polypyrrole length sensors are evaluated over the same frequency range. Polypyrrole supercapacitors are evaluated as a function of dopant, electrolyte, geometry, and mass, enabling the determination of their capacitance, charge-discharge lifetime, and self-discharge. Fabrication techniques for combining multiple conducting polymer components (actuators, length sensors, and energy storage elements) by means of electrically insulated, mechanical attachments are developed and demonstrated. An all-polymer, open loop linear contractile actuation system is presented, along with the first conducting polymer powered conducting polymer actuators, and the first tripolymer system. These results build a foundation upon which large, scalable, self-powered, all polymer electro-chemo-mechanical actuation systems can be developed for a future set of conducting polymer artificial muscle systems.by Eli Paster.S.M
    • …
    corecore