1,699 research outputs found

    A real-time, dual processor simulation of the rotor system research aircraft

    Get PDF
    A real-time, man-in-the loop, simulation of the rotor system research aircraft (RSRA) was conducted. The unique feature of this simulation was that two digital computers were used in parallel to solve the equations of the RSRA mathematical model. The design, development, and implementation of the simulation are documented. Program validation was discussed, and examples of data recordings are given. This simulation provided an important research tool for the RSRA project in terms of safe and cost-effective design analysis. In addition, valuable knowledge concerning parallel processing and a powerful simulation hardware and software system was gained

    Numerical modelling of the aerodynamic interference between helicopter and ground obstacles

    Get PDF
    Helicopters are frequently operating in confined areas where the complex flow fields that develop in windy conditions may result in dangerous situations. Tools to analyse the interaction between rotorcraft wakes and ground obstacles are therefore essential. This work, carried out within the activity of the GARTEUR Action Group 22 on “Forces on Obstacles in Rotor Wake”, attempts to assess numerical models for this problem. In particular, a helicopter operating in hover above a building as well as in its wake, one main rotor diameter above the ground, has been analysed. Recent tests conducted at Politecnico di Milano provide a basis for comparison with unsteady simulations performed, with and without wind. The helicopter rotor has been modelled using steady and unsteady actuator disk methods, as well as with fully resolved blade simulations. The results identify the most efficient aerodynamic model that captures the wakes interaction, so that real-time coupled simulations can be made possible. Previous studies have already proved that the wake superposition technique cannot guarantee accurate results if the helicopter is close to the obstacle. The validity of that conclusion has been further investigated in this work to determine the minimum distance between helicopter and building at which minimal wake interference occurs

    Aerodynamic interference effects on tilting proprotor aircraft

    Get PDF
    The Green's function method was used to study tilting proprotor aircraft aerodynamics with particular application to the problem of the mutual interference of the wing-fuselage-tail-rotor wake configuration. While the formulation is valid for fully unsteady rotor aerodynamics, attention was directed to steady state aerodynamics, which was achieved by replacing the rotor with the actuator disk approximation. The use of an actuator disk analysis introduced a mathematical singularity into the formulation; this problem was studied and resolved. The pressure distribution, lift, and pitching moment were obtained for an XV-15 wing-fuselage-tail rotor configuration at various flight conditions. For the flight configurations explored, the effects of the rotor wake interference on the XV-15 tilt rotor aircraft yielded a reduction in the total lift and an increase in the nose-down pitching moment. This method provides an analytical capability that is simple to apply and can be used to investigate fuselage-tail rotor wake interference as well as to explore other rotor design problem areas

    Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    Get PDF
    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed

    A mathematical simulation model of the CH-47B helicopter, volume 1

    Get PDF
    A nonlinear simulation model of the CH-47B helicopter was adapted for use in the NASA Ames Research Center (ARC) simulation facility. The model represents the specific configuration of the ARC variable stability CH-47B helicopter and will be used in ground simulation research and to expedite and verify flight experiment design. Modeling of the helicopter uses a total force approach in six rigid body degrees of freedom. Rotor dynamics are simulated using the Wheatlely-Bailey equations including steady-state flapping dynamics. Also included in the model is the option for simulation of external suspension, slung-load equations of motion

    Minimum-complexity helicopter simulation math model

    Get PDF
    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed

    Computers for real time flight simulation: A market survey

    Get PDF
    An extensive computer market survey was made to determine those available systems suitable for current and future flight simulation studies at Ames Research Center. The primary requirement is for the computation of relatively high frequency content (5 Hz) math models representing powered lift flight vehicles. The Rotor Systems Research Aircraft (RSRA) was used as a benchmark vehicle for computation comparison studies. The general nature of helicopter simulations and a description of the benchmark model are presented, and some of the sources of simulation difficulties are examined. A description of various applicable computer architectures is presented, along with detailed discussions of leading candidate systems and comparisons between them

    Numerical aeroacoustic analysis of propeller designs

    Get PDF
    As propeller-driven aircraft are the best choice for short/middle-haul flights but their acoustic emissions may require improvements to comply with future noise certification standards, this work aims to numerically evaluate the acoustics of different modern propeller designs. Overall sound pressure level and noise spectra of various blade geometries and hub configurations are compared on a surface representing the exterior fuselage of a typical large turboprop aircraft. Interior cabin noise is also evaluated using the transfer function of a Fokker 50 aircraft. A blade design operating at lower RPM and with the span-wise loading moved inboard is shown to be significantly quieter without severe performance penalties. The employed Computational Fluid Dynamics (CFD) method is able to reproduce the tonal content of all blades and its dependence on hub and blade design features

    An unsteady helicopter rotor: Fuselage interaction analysis

    Get PDF
    A computational method was developed to treat unsteady aerodynamic interactions between a helicopter rotor, wake, and fuselage and between the main and tail rotors. An existing lifting line prescribed wake rotor analysis and a source panel fuselage analysis were coupled and modified to predict unsteady fuselage surface pressures and airloads. A prescribed displacement technique is used to position the rotor wake about the fuselage. Either a rigid blade or an aeroelastic blade analysis may be used to establish rotor operating conditions. Sensitivity studies were performed to determine the influence of the wake fuselage geometry on the computation. Results are presented that describe the induced velocities, pressures, and airloads on the fuselage and on the rotor. The ability to treat arbitrary geometries is demonstrated using a simulated helicopter fuselage. The computational results are compared with fuselage surface pressure measurements at several locations. No experimental data was available to validate the primary product of the analysis: the vibratory airloads on the entire fuselage. A main rotor-tail rotor interaction analysis is also described, along with some hover and forward flight

    Main rotor-tail rotor intraction and its implications for helicopter directional control

    Get PDF
    Aerodynamic interference between the main and tail rotor can have a strong negative influence on the flight mechanics of a conventional helicopter. Significant unsteadiness in the tail rotor loading is encountered under certain flight conditions, but the character of the unsteadiness can depend on the direction of rotation of the tail rotor. Numerical simulations, using Brown's vorticity transport model, of the aerodynamic interaction between the main and tail rotors of a helicopter are presented for a range of forward and lateral flight trajectories. Distinct differences are predicted in the behavior of the system in left and right sideward flight that are consistent with flight experience that the greatest fluctuations in loading or control input are required in left sideways flight (for a counterclockwise rotating main rotor). These fluctuations are generally more extreme for a system with tail rotor rotating top-forward than top-aft. Differences are also exposed in the character of the lateral excitation of the system as forward flight speed is varied. The observed behavior appears to originate in the disruption of the tail rotor wake that is induced by its entrainment into the wake of the main rotor. The extent of the disruption is dependent on flight condition, and the unsteadiness of the process depends on the direction of rotation of the tail rotor. In intermediate-speed forward flight and right sideward flight, the free stream delays the entrainment of the tail rotor wake far enough downstream for the perturbations to the rotor loading to be slight. Conversely, in left sideward and quartering flight, the free stream confines the entrainment process close to the rotors, where it causes significant unsteadiness in the loads produced by the system
    corecore