113,469 research outputs found

    Multiobjective Approach to Portfolio Optimization in the Light of the Credibility Theory

    Get PDF
    [EN] The present research proposes a novel methodology to solve the problems faced by investors who take into consideration different investment criteria in a fuzzy context. The approach extends the stochastic mean-variance model to a fuzzy multiobjective model where liquidity is considered to quantify portfolio's performance, apart from the usual metrics like return and risk. The uncertainty of the future returns and the future liquidity of the potential assets are modelled employing trapezoidal fuzzy numbers. The decision process of the proposed approach considers that portfolio selection is a multidimensional issue and also some realistic constraints applied by investors. Particularly, this approach optimizes the expected return, the risk and the expected liquidity of the portfolio, considering bound constraints and cardinality restrictions. As a result, an optimization problem for the constraint portfolio appears, which is solved by means of the NSGA-II algorithm. This study defines the credibilistic Sortino ratio and the credibilistic STARR ratio for selecting the optimal portfolio. An empirical study on the S&P100 index is included to show the performance of the model in practical applications. The results obtained demonstrate that the novel approach can beat the index in terms of return and risk in the analyzed period, from 2008 until 2018.GarcĂ­a GarcĂ­a, F.; GonzĂĄlez-Bueno, J.; Guijarro, F.; Oliver-Muncharaz, J.; Tamosiuniene, R. (2020). Multiobjective Approach to Portfolio Optimization in the Light of the Credibility Theory. Technological and Economic Development of Economy (Online). 26(6):1165-1186. https://doi.org/10.3846/tede.2020.13189S11651186266Acerbi, C., & Tasche, D. (2002). On the coherence of expected shortfall. Journal of Banking & Finance, 26(7), 1487-1503. doi:10.1016/s0378-4266(02)00283-2Ahmed, A., Ali, R., Ejaz, A., & Ahmad, I. (2018). Sectoral integration and investment diversification opportunities: evidence from Colombo Stock Exchange. Entrepreneurship and Sustainability Issues, 5(3), 514-527. doi:10.9770/jesi.2018.5.3(8)Arenas Parra, M., Bilbao Terol, A., & Rodrı́guez Urı́a, M. V. (2001). A fuzzy goal programming approach to portfolio selection. European Journal of Operational Research, 133(2), 287-297. doi:10.1016/s0377-2217(00)00298-8Arribas, I., EspinĂłs-Vañó, M. D., GarcĂ­a, F., & TamoĆĄiĆ«nienė, R. (2019). Negative screening and sustainable portfolio diversification. Entrepreneurship and Sustainability Issues, 6(4), 1566-1586. doi:10.9770/jesi.2019.6.4(2)Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent Measures of Risk. Mathematical Finance, 9(3), 203-228. doi:10.1111/1467-9965.00068Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2(1), 95-121. doi:10.1016/0304-405x(75)90025-2BermĂșdez, J. D., Segura, J. V., & Vercher, E. (2012). A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy Sets and Systems, 188(1), 16-26. doi:10.1016/j.fss.2011.05.013Bezoui, M., MoulaĂŻ, M., Bounceur, A., & Euler, R. (2018). An iterative method for solving a bi-objective constrained portfolio optimization problem. Computational Optimization and Applications, 72(2), 479-498. doi:10.1007/s10589-018-0052-9Bi, T., Zhang, B., & Wu, H. (2013). Measuring Downside Risk Using High-Frequency Data: Realized Downside Risk Measure. Communications in Statistics - Simulation and Computation, 42(4), 741-754. doi:10.1080/03610918.2012.655826Carlsson, C., FullĂ©r, R., & Majlender, P. (2002). A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets and Systems, 131(1), 13-21. doi:10.1016/s0165-0114(01)00251-2Chen, W., & Xu, W. (2018). A Hybrid Multiobjective Bat Algorithm for Fuzzy Portfolio Optimization with Real-World Constraints. International Journal of Fuzzy Systems, 21(1), 291-307. doi:10.1007/s40815-018-0533-0Choobineh, F., & Branting, D. (1986). A simple approximation for semivariance. European Journal of Operational Research, 27(3), 364-370. doi:10.1016/0377-2217(86)90332-2Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017Fang, Y., Lai, K. K., & Wang, S.-Y. (2006). Portfolio rebalancing model with transaction costs based on fuzzy decision theory. European Journal of Operational Research, 175(2), 879-893. doi:10.1016/j.ejor.2005.05.020Favre, L., & Galeano, J.-A. (2002). Mean-Modified Value-at-Risk Optimization with Hedge Funds. The Journal of Alternative Investments, 5(2), 21-25. doi:10.3905/jai.2002.319052GarcĂ­a, F., GonzĂĄlez-Bueno, J., Guijarro, F., & Oliver, J. (2020). Forecasting the Environmental, Social, and Governance Rating of Firms by Using Corporate Financial Performance Variables: A Rough Set Approach. Sustainability, 12(8), 3324. doi:10.3390/su12083324GarcĂ­a, GonzĂĄlez-Bueno, Oliver, & Riley. (2019). Selecting Socially Responsible Portfolios: A Fuzzy Multicriteria Approach. Sustainability, 11(9), 2496. doi:10.3390/su11092496GarcĂ­a, F., GonzĂĄlez-Bueno, J., Oliver, J., & TamoĆĄiĆ«nienė, R. (2019). A CREDIBILISTIC MEAN-SEMIVARIANCE-PER PORTFOLIO SELECTION MODEL FOR LATIN AMERICA. Journal of Business Economics and Management, 20(2), 225-243. doi:10.3846/jbem.2019.8317GarcĂ­a, F., Guijarro, F., & Moya, I. (2013). A MULTIOBJECTIVE MODEL FOR PASSIVE PORTFOLIO MANAGEMENT: AN APPLICATION ON THE S&P 100 INDEX. Journal of Business Economics and Management, 14(4), 758-775. doi:10.3846/16111699.2012.668859GarcĂ­a, F., Guijarro, F., & Oliver, J. (2017). Index tracking optimization with cardinality constraint: a performance comparison of genetic algorithms and tabu search heuristics. Neural Computing and Applications, 30(8), 2625-2641. doi:10.1007/s00521-017-2882-2GarcĂ­a, F., Guijarro, F., Oliver, J., & TamoĆĄiĆ«nienė, R. (2018). HYBRID FUZZY NEURAL NETWORK TO PREDICT PRICE DIRECTION IN THE GERMAN DAX-30 INDEX. Technological and Economic Development of Economy, 24(6), 2161-2178. doi:10.3846/tede.2018.6394Goel, A., Sharma, A., & Mehra, A. (2018). Index tracking and enhanced indexing using mixed conditional value-at-risk. Journal of Computational and Applied Mathematics, 335, 361-380. doi:10.1016/j.cam.2017.12.015GonzĂĄlez-Bueno, J. (2019). OptimizaciĂłn multiobjetivo para la selecciĂłn de carteras a la luz de la teorĂ­a de la credibilidad. Una aplicaciĂłn en el mercado integrado latinoamericano. Editorial Universidad Pontificia Bolivariana.Gupta, P., Inuiguchi, M., & Mehlawat, M. K. (2011). A hybrid approach for constructing suitable and optimal portfolios. Expert Systems with Applications, 38(5), 5620-5632. doi:10.1016/j.eswa.2010.10.073Gupta, P., Inuiguchi, M., Mehlawat, M. K., & Mittal, G. (2013). Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints. Information Sciences, 229, 1-17. doi:10.1016/j.ins.2012.12.011Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014). Portfolio Optimization Using Credibility Theory. Studies in Fuzziness and Soft Computing, 127-160. doi:10.1007/978-3-642-54652-5_5Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014). Portfolio Optimization with Interval Coefficients. Studies in Fuzziness and Soft Computing, 33-59. doi:10.1007/978-3-642-54652-5_2Gupta, P., Mehlawat, M. K., Kumar, A., Yadav, S., & Aggarwal, A. (2020). A Credibilistic Fuzzy DEA Approach for Portfolio Efficiency Evaluation and Rebalancing Toward Benchmark Portfolios Using Positive and Negative Returns. International Journal of Fuzzy Systems, 22(3), 824-843. doi:10.1007/s40815-020-00801-4Gupta, P., Mehlawat, M. K., & Saxena, A. (2010). A hybrid approach to asset allocation with simultaneous consideration of suitability and optimality. Information Sciences, 180(11), 2264-2285. doi:10.1016/j.ins.2010.02.007Gupta, P., Mehlawat, M. K., Yadav, S., & Kumar, A. (2020). Intuitionistic fuzzy optimistic and pessimistic multi-period portfolio optimization models. Soft Computing, 24(16), 11931-11956. doi:10.1007/s00500-019-04639-3Gupta, P., Mittal, G., & Mehlawat, M. K. (2013). Expected value multiobjective portfolio rebalancing model with fuzzy parameters. Insurance: Mathematics and Economics, 52(2), 190-203. doi:10.1016/j.insmatheco.2012.12.002Heidari-Fathian, H., & Davari-Ardakani, H. (2019). Bi-objective optimization of a project selection and adjustment problem under risk controls. Journal of Modelling in Management, 15(1), 89-111. doi:10.1108/jm2-07-2018-0106Hilkevics, S., & Semakina, V. (2019). The classification and comparison of business ratios analysis methods. Insights into Regional Development, 1(1), 48-57. doi:10.9770/ird.2019.1.1(4)Huang, X. (2006). Fuzzy chance-constrained portfolio selection. Applied Mathematics and Computation, 177(2), 500-507. doi:10.1016/j.amc.2005.11.027Huang, X. (2008). Mean-semivariance models for fuzzy portfolio selection. Journal of Computational and Applied Mathematics, 217(1), 1-8. doi:10.1016/j.cam.2007.06.009Huang, X. (2009). A review of credibilistic portfolio selection. Fuzzy Optimization and Decision Making, 8(3), 263-281. doi:10.1007/s10700-009-9064-3Huang, X. (2010). Portfolio Analysis. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-642-11214-0Huang, X. (2017). A review of uncertain portfolio selection. Journal of Intelligent & Fuzzy Systems, 32(6), 4453-4465. doi:10.3233/jifs-169211Huang, X., & Di, H. (2016). Uncertain portfolio selection with background risk. Applied Mathematics and Computation, 276, 284-296. doi:10.1016/j.amc.2015.12.018Huang, X., & Wang, X. (2019). International portfolio optimization based on uncertainty theory. Optimization, 70(2), 225-249. doi:10.1080/02331934.2019.1705821Huang, X., & Yang, T. (2020). How does background risk affect portfolio choice: An analysis based on uncertain mean-variance model with background risk. Journal of Banking & Finance, 111, 105726. doi:10.1016/j.jbankfin.2019.105726Jalota, H., Thakur, M., & Mittal, G. (2017). Modelling and constructing membership function for uncertain portfolio parameters: A credibilistic framework. Expert Systems with Applications, 71, 40-56. doi:10.1016/j.eswa.2016.11.014Jalota, H., Thakur, M., & Mittal, G. (2017). A credibilistic decision support system for portfolio optimization. Applied Soft Computing, 59, 512-528. doi:10.1016/j.asoc.2017.05.054Kaplan, P. D., & Alldredge, R. H. (1997). Semivariance in Risk-Based Index Construction. The Journal of Investing, 6(2), 82-87. doi:10.3905/joi.1997.408419Konno, H., & Yamazaki, H. (1991). Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market. Management Science, 37(5), 519-531. doi:10.1287/mnsc.37.5.519Li, B., Zhu, Y., Sun, Y., Aw, G., & Teo, K. L. (2018). Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint. Applied Mathematical Modelling, 56, 539-550. doi:10.1016/j.apm.2017.12.016Li, H.-Q., & Yi, Z.-H. (2019). Portfolio selection with coherent Investor’s expectations under uncertainty. Expert Systems with Applications, 133, 49-58. doi:10.1016/j.eswa.2019.05.008Li, X., & Qin, Z. (2014). Interval portfolio selection models within the framework of uncertainty theory. Economic Modelling, 41, 338-344. doi:10.1016/j.econmod.2014.05.036Liagkouras, K., & Metaxiotis, K. (2015). Efficient Portfolio Construction with the Use of Multiobjective Evolutionary Algorithms: Best Practices and Performance Metrics. International Journal of Information Technology & Decision Making, 14(03), 535-564. doi:10.1142/s0219622015300013Liu, B. (2004). Uncertainty Theory. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39987-2Baoding Liu, & Yian-Kui Liu. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10(4), 445-450. doi:10.1109/tfuzz.2002.800692Liu, N., Chen, Y., & Liu, Y. (2018). Optimizing portfolio selection problems under credibilistic CVaR criterion. Journal of Intelligent & Fuzzy Systems, 34(1), 335-347. doi:10.3233/jifs-171298Liu, Y.-J., & Zhang, W.-G. (2018). Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory. International Journal of Information Technology & Decision Making, 17(03), 941-968. doi:10.1142/s0219622018500190Mansour, N., Cherif, M. S., & Abdelfattah, W. (2019). Multi-objective imprecise programming for financial portfolio selection with fuzzy returns. Expert Systems with Applications, 138, 112810. doi:10.1016/j.eswa.2019.07.027Markowitz, H. (1952). PORTFOLIO SELECTION*. The Journal of Finance, 7(1), 77-91. doi:10.1111/j.1540-6261.1952.tb01525.xMarkowitz, H., Todd, P., Xu, G., & Yamane, Y. (1993). Computation of mean-semivariance efficient sets by the Critical Line Algorithm. Annals of Operations Research, 45(1), 307-317. doi:10.1007/bf02282055Martin, R. D., Rachev, S. (Zari), & Siboulet, F. (2003). Phi-alpha optimal portfolios and extreme risk management. Wilmott, 2003(6), 70-83. doi:10.1002/wilm.42820030619Mehlawat, M. K. (2016). Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels. Information Sciences, 345, 9-26. doi:10.1016/j.ins.2016.01.042Mehlawat, M. K., Gupta, P., Kumar, A., Yadav, S., & Aggarwal, A. (2020). Multiobjective Fuzzy Portfolio Performance Evaluation Using Data Envelopment Analysis Under Credibilistic Framework. IEEE Transactions on Fuzzy Systems, 28(11), 2726-2737. doi:10.1109/tfuzz.2020.2969406Mehralizade, R., Amini, M., Sadeghpour Gildeh, B., & Ahmadzade, H. (2020). Uncertain random portfolio selection based on risk curve. Soft Computing, 24(17), 13331-13345. doi:10.1007/s00500-020-04751-9Moeini, M. (2019). Solving the index tracking problem: a continuous optimization approach. Central European Journal of Operations Research. doi:10.1007/s10100-019-00633-0Narkunienė, J., & Ulbinaitė, A. (2018). Comparative analysis of company performance evaluation methods. Entrepreneurship and Sustainability Issues, 6(1), 125-138. doi:10.9770/jesi.2018.6.1(10)Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R. (2009). Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II). Metals and Materials International, 15(2), 249-258. doi:10.1007/s12540-009-0249-7Pflug, G. C. (2000). Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk. Probabilistic Constrained Optimization, 272-281. doi:10.1007/978-1-4757-3150-7_15Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2(3), 21-41. doi:10.21314/jor.2000.038Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443-1471. doi:10.1016/s0378-4266(02)00271-6Rubio, A., BermĂșdez, J. D., & Vercher, E. (2016). Forecasting portfolio returns using weighted fuzzy time series methods. International Journal of Approximate Reasoning, 75, 1-12. doi:10.1016/j.ijar.2016.03.007Saborido, R., Ruiz, A. B., BermĂșdez, J. D., Vercher, E., & Luque, M. (2016). Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Applied Soft Computing, 39, 48-63. doi:10.1016/j.asoc.2015.11.005Sharpe, W. F. (1966). Mutual Fund Performance. The Journal of Business, 39(S1), 119. doi:10.1086/294846Sharpe, W. F. (1994). The Sharpe Ratio. The Journal of Portfolio Management, 21(1), 49-58. doi:10.3905/jpm.1994.409501Sortino, F. A., & Price, L. N. (1994). Performance Measurement in a Downside Risk Framework. The Journal of Investing, 3(3), 59-64. doi:10.3905/joi.3.3.59Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221-248. doi:10.1162/evco.1994.2.3.221Vercher, E., & BermĂșdez, J. D. (2012). Fuzzy Portfolio Selection Models: A Numerical Study. Financial Decision Making Using Computational Intelligence, 253-280. doi:10.1007/978-1-4614-3773-4_10Vercher, E., & Bermudez, J. D. (2013). A Possibilistic Mean-Downside Risk-Skewness Model for Efficient Portfolio Selection. IEEE Transactions on Fuzzy Systems, 21(3), 585-595. doi:10.1109/tfuzz.2012.2227487Vercher, E., & BermĂșdez, J. D. (2015). Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Systems with Applications, 42(20), 7121-7131. doi:10.1016/j.eswa.2015.05.020Vercher, E., BermĂșdez, J. D., & Segura, J. V. (2007). Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems, 158(7), 769-782. doi:10.1016/j.fss.2006.10.026Wang, S., & Zhu, S. (2002). Fuzzy Optimization and Decision Making, 1(4), 361-377. doi:10.1023/a:1020907229361Yue, W., & Wang, Y. (2017). A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios. Physica A: Statistical Mechanics and its Applications, 465, 124-140. doi:10.1016/j.physa.2016.08.009Yue, W., Wang, Y., & Xuan, H. (2018). Fuzzy multi-objective portfolio model based on semi-variance–semi-absolute deviation risk measures. Soft Computing, 23(17), 8159-8179. doi:10.1007/s00500-018-3452-yZadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZhai, J., & Bai, M. (2018). Mean-risk model for uncertain portfolio selection with background risk. Journal of Computational and Applied Mathematics, 330, 59-69. doi:10.1016/j.cam.2017.07.038Zhao, Z., Wang, H., Yang, X., & Xu, F. (2020). CVaR-cardinality enhanced indexation optimization with tunable short-selling constraints. Applied Economics Letters, 28(3), 201-207. doi:10.1080/13504851.2020.174015

    Portfolio selection models: A review and new directions

    Get PDF
    Modern Portfolio Theory (MPT) is based upon the classical Markowitz model which uses variance as a risk measure. A generalization of this approach leads to mean-risk models, in which a return distribution is characterized by the expected value of return (desired to be large) and a risk value (desired to be kept small). Portfolio choice is made by solving an optimization problem, in which the portfolio risk is minimized and a desired level of expected return is specified as a constraint. The need to penalize different undesirable aspects of the return distribution led to the proposal of alternative risk measures, notably those penalizing only the downside part (adverse) and not the upside (potential). The downside risk considerations constitute the basis of the Post Modern Portfolio Theory (PMPT). Examples of such risk measures are lower partial moments, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). We revisit these risk measures and the resulting mean-risk models. We discuss alternative models for portfolio selection, their choice criteria and the evolution of MPT to PMPT which incorporates: utility maximization and stochastic dominance

    Exploiting skewness to build an optimal hedge fund with a currency overlay

    Get PDF
    This paper documents an investigation into the use of portfolio selection methods to construct a hedge fund with a currency overlay. The fund, which is based on number of international stock and bond market indices and is constructed from the perspective of a Sterling investor, allows the individual exposures in the currency overlay to be optimally determined. As well as using traditional mean variance, the paper constructs the hedge funds using portfolio selection methods that incorporate skewness in the optimisation process. These methods are based on the multivariate skewnormal distribution, which motivates the use of a linear skewness shock. An extension to Stein's lemma gives the ability to explore the mean-variance-skewness efficient surface without the necessity to be concerned with the precise form of an individual investor's utility function. The results suggest that it is possible to use mean variance optimisation methods to build a hedge fund based on the assets and return forecasts described. The results also suggest that the inclusion of a skewness component in the optimisation is beneficial. In many of the cases reported, the skewness term contributes to an improvement in performance over and above that given by mean variance methods

    Mean-risk models using two risk measures: A multi-objective approach

    Get PDF
    This paper proposes a model for portfolio optimisation, in which distributions are characterised and compared on the basis of three statistics: the expected value, the variance and the CVaR at a specified confidence level. The problem is multi-objective and transformed into a single objective problem in which variance is minimised while constraints are imposed on the expected value and CVaR. In the case of discrete random variables, the problem is a quadratic program. The mean-variance (mean-CVaR) efficient solutions that are not dominated with respect to CVaR (variance) are particular efficient solutions of the proposed model. In addition, the model has efficient solutions that are discarded by both mean-variance and mean-CVaR models, although they may improve the return distribution. The model is tested on real data drawn from the FTSE 100 index. An analysis of the return distribution of the chosen portfolios is presented

    Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution

    Get PDF
    The returns on most financial assets exhibit kurtosis and many also have probability distributions that possess skewness as well. In this paper a general multivariate model for the probability distribution of assets returns, which incorporates both kurtosis and skewness, is described. It is based on the multivariate extended skew-Student-t distribution. Salient features of the distribution are described and these are applied to the task of asset pricing. The paper shows that the market model is non-linear in general and that the sensitivity of asset returns to return on the market portfolio is not the same as the conventional beta, although this measure does arise in special cases. It is shown that the variance of asset returns is time varying and depends on the squared deviation of market portfolio return from its location parameter. The first order conditions for portfolio selection are described. Expected utility maximisers will select portfolios from an efficient surface, which is an analogue of the familiar mean-variance frontier, and which may be implemented using quadratic programming

    Direct Data-Driven Portfolio Optimization with Guaranteed Shortfall Probability

    Get PDF
    This paper proposes a novel methodology for optimal allocation of a portfolio of risky financial assets. Most existing methods that aim at compromising between portfolio performance (e.g., expected return) and its risk (e.g., volatility or shortfall probability) need some statistical model of the asset returns. This means that: ({\em i}) one needs to make rather strong assumptions on the market for eliciting a return distribution, and ({\em ii}) the parameters of this distribution need be somehow estimated, which is quite a critical aspect, since optimal portfolios will then depend on the way parameters are estimated. Here we propose instead a direct, data-driven, route to portfolio optimization that avoids both of the mentioned issues: the optimal portfolios are computed directly from historical data, by solving a sequence of convex optimization problems (typically, linear programs). Much more importantly, the resulting portfolios are theoretically backed by a guarantee that their expected shortfall is no larger than an a-priori assigned level. This result is here obtained assuming efficiency of the market, under no hypotheses on the shape of the joint distribution of the asset returns, which can remain unknown and need not be estimate
    • 

    corecore