24,144 research outputs found

    Nutrient Management Approaches and Tools for Dairy Farms in Australia and the U.S.

    Get PDF
    Nutrient surpluses in industrialized nations like the U.S. and Australia are causing problems on dairy farms and posing a threat to the rest of the environment. This paper discusses tools that dairy farmers can use to manage the excess nutrients while continuing to meet demands and profit. The authors suggest improvements in these tools that will not only quantify the amount of nutrient balances on dairy farms, but also identify opportunities for enhanced nutrient use and reduced nutrient losses.Nutrient Management Tools, Australian Dairy Farms, U.S. Dairy Farms, Confinement-based Dairy Operations, Grazing-based Diary Operations, Environmental Economics and Policy, Farm Management, Land Economics/Use,

    Understanding nitrogen transfer dynamics in a small agricultural catchment: Comparison of a distributed (TNT2) and a semi distributed (SWAT) modeling approaches

    Get PDF
    The coupling of an hydrological and a crop model is an efficient approach to study the impact of the interactions between agricultural practices and catchment physical characteristics on stream water quality. We analyzed the consequences of using different modeling approaches of the processes controlling the nitrogen (N) dynamics in a small agricultural catchment monitored for 15 years. Two agro-hydrological models were applied: the fully distributed model TNT2 and the semi-distributed SWAT model. Using the same input dataset, the calibration process aimed at reproducing the same annual water and N balance in both models, to compare the spatial and temporal variability of the main N processes. The models simulated different seasonal cycles for soil N. The main processes involved were N mineralization and denitrification. TNT2 simulated marked seasonal variations with a net increase of mineralization in autumn, after a transient immobilization phase due to the burying of the straw with low C:N ratio. SWAT predicted a steady humus mineralization with an increase when straws are buried and a decrease afterwards. Denitrification was mainly occuring in autumn in TNT2 because of the dynamics of N availability in soil and of the climatic and hydrological conditions. SWAT predicts denitrification in winter, when mineral N is available in soil layers. The spatial distribution of these two processes was different as well: less denitrification in bottom land and close to ditches in TNT2, as a result of N transfer dynamics. Both models simulate correctly global trend and inter-annual variability of N losses in small agricultural catchment when a sufficient amount data is available for calibration. However, N processes and their spatial interactions are simulated very differently, in particular soil mineralization and denitrification. The use of such tools for prediction must be considered with care, unless a proper calibration and validation of the different N processes is carried out

    Soil biodiversity: functions, threats and tools for policy makers

    Get PDF
    Human societies rely on the vast diversity of benefits provided by nature, such as food, fibres, construction materials, clean water, clean air and climate regulation. All the elements required for these ecosystem services depend on soil, and soil biodiversity is the driving force behind their regulation. With 2010 being the international year of biodiversity and with the growing attention in Europe on the importance of soils to remain healthy and capable of supporting human activities sustainably, now is the perfect time to raise awareness on preserving soil biodiversity. The objective of this report is to review the state of knowledge of soil biodiversity, its functions, its contribution to ecosystem services and its relevance for the sustainability of human society. In line with the definition of biodiversity given in the 1992 Rio de Janeiro Convention, soil biodiversity can be defined as the variation in soil life, from genes to communities, and the variation in soil habitats, from micro-aggregates to entire landscapes. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment

    Nitrogen flows from European watersheds to coastal marine waters

    Get PDF
    Nitrogen flows from European watersheds to coastal marine waters Executive summary Nature of the problem ‱ Most regional watersheds in Europe constitute managed human territories importing large amounts of new reactive nitrogen. ‱ As a consequence, groundwater, surface freshwater and coastal seawater are undergoing severe nitrogen contamination and/or eutrophication problems. Approaches ‱ A comprehensive evaluation of net anthropogenic inputs of reactive nitrogen (NANI) through atmospheric deposition, crop N fixation,fertiliser use and import of food and feed has been carried out for all European watersheds. A database on N, P and Si fluxes delivered at the basin outlets has been assembled. ‱ A number of modelling approaches based on either statistical regression analysis or mechanistic description of the processes involved in nitrogen transfer and transformations have been developed for relating N inputs to watersheds to outputs into coastal marine ecosystems. Key findings/state of knowledge ‱ Throughout Europe, NANI represents 3700 kgN/km2/yr (range, 0–8400 depending on the watershed), i.e. five times the background rate of natural N2 fixation. ‱ A mean of approximately 78% of NANI does not reach the basin outlet, but instead is stored (in soils, sediments or ground water) or eliminated to the atmosphere as reactive N forms or as N2. ‱ N delivery to the European marine coastal zone totals 810 kgN/km2/yr (range, 200–4000 depending on the watershed), about four times the natural background. In areas of limited availability of silica, these inputs cause harmful algal blooms. Major uncertainties/challenges ‱ The exact dimension of anthropogenic N inputs to watersheds is still imperfectly known and requires pursuing monitoring programmes and data integration at the international level. ‱ The exact nature of ‘retention’ processes, which potentially represent a major management lever for reducing N contamination of water resources, is still poorly understood. ‱ Coastal marine eutrophication depends to a large degree on local morphological and hydrographic conditions as well as on estuarine processes, which are also imperfectly known. Recommendations ‱ Better control and management of the nitrogen cascade at the watershed scale is required to reduce N contamination of ground- and surface water, as well as coastal eutrophication. ‱ In spite of the potential of these management measures, there is no choice at the European scale but to reduce the primary inputs of reactive nitrogen to watersheds, through changes in agriculture, human diet and other N flows related to human activity

    Thresholds of terrestrial nutrient loading for the development of eutrophication episodes in a coastal embayment in the Aegean Sea

    Get PDF
    Thresholds of terrestrial nutrient loading (inorganic N and P) for the development of eutrophication episodes were estimated in an enclosed embayment, the gulf of Kalloni, in the Aegean, Eastern Mediterranean. Terrestrial loading was quantified by a watershed runoff model taking into account land use, geomorphology, sewerage, industrial and animal farming by-products. The eutrophication episodes were assessed by an existing scale for the Aegean coastal waters based on chl a, whereas the necessary nutrient concentrations (N and P) for the development of such episodes were defined using a probabilistic procedure. Finally, for the linking between nutrient loading arriving at the gulf and the resulting nutrient enrichment of the marine ecosystem, three loading factors were applied, developed by Vollenweider for lake and marine ecosystems. The first assumes no exchange between the embayment and the open sea, whereas the two others take into account water renewal time. Only the threshold for inorganic nitrogen estimated by the first factor was exceeded in the study area during February after a strong rainfall event coinciding with a eutrophication episode observed in the interior of the gulf, implying that the waters of the gulf are rather confined and the receiving body operates as a lake. The degree of confinement was further examined by studying the temperature, salinity, and density distributions inside the gulf and across the channel connecting the gulf to the open sea. It was found that the incoming freshwater from the watershed during winter results to the formation of a dilute surface layer of low salinity and density, clearly isolated from the open sea. The nutrients from the river inputs are diluted into this isolated water mass and the eutrophication threshold for nitrogen is exceeded. Although phosphorus loading was also high during winter, the corresponding limits were never exceeded. The proposed methodology sets a quantitative relationship between terrestrial nutrient loading and the development of eutrophication episodes in coastal embayments, assuming that information on the physical setting of the system is available. These cause-and-effect relationships can be invaluable tools for managers and decision makers in the framework of Integrated Coastal Zone Management

    Developing a multi-pollutant conceptual framework for the selection and targeting of interventions in water industry catchment management schemes

    Get PDF
    In recent years water companies have started to adopt catchment management to reduce diffuse pollution in drinking water supply areas. The heterogeneity of catchments and the range of pollutants that must be removed to meet the EU Drinking Water Directive (98/83/EC) limits make it difficult to prioritise areas of a catchment for intervention. Thus conceptual frameworks are required that can disaggregate the components of pollutant risk and help water companies make decisions about where to target interventions in their catchments to maximum effect. This paper demonstrates the concept of generalising pollutants in the same framework by reviewing key pollutant processes within a source-mobilisation-delivery context. From this, criteria are developed (with input from water industry professionals involved in catchment management) which highlights the need for a new water industry specific conceptual framework. The new CaRPoW (Catchment Risk to Potable Water) framework uses the Source-Mobilisation-Delivery concept as modular components of risk that work at two scales, source and mobilisation at the field scale and delivery at the catchment scale. Disaggregating pollutant processes permits the main components of risk to be ascertained so that appropriate interventions can be selected. The generic structure also allows for the outputs from different pollutants to be compared so that potential multiple benefits can be identified. CaRPow provides a transferable framework that can be used by water companies to cost-effectively target interventions under current conditions or under scenarios of land use or climate change

    Relationships between land use and nitrogen and phosphorus in New Zealand lakes

    Get PDF
    Developing policies to address lake eutrophication requires an understanding of the relative contribution of different nutrient sources and of how lake and catchment characteristics interact to mediate the source–receptor pathway. We analysed total nitrogen (TN) and total phosphorus (TP) data for 101 New Zealand lakes and related these to land use and edaphic sources of phosphorus (P). We then analysed a sub-sample of lakes in agricultural catchments to investigate how lake and catchment variables influence the relationship between land use and in-lake nutrients. Following correction for the effect of co-variation amongst predictor variables, high producing grassland (intensive pasture) was the best predictor of TN and TP, accounting for 38.6% and 41.0% of variation, respectively. Exotic forestry and urban area accounted for a further 18.8% and 3.6% of variation in TP and TN, respectively. Soil P (representing naturally-occurring edaphic P) was negatively correlated with TP, owing to the confounding effect of pastoral land use. Lake and catchment morphology (zmax and lake : catchment area) and catchment connectivity (lake order) mediated the relationship between intensive pasture and in-lake nutrients. Mitigating eutrophication in New Zealand lakes requires action to reduce nutrient export from intensive pasture and quantifying P export from plantation forestry requires further consideration

    Modeling nitrogen loading in a small watershed in southwest China using a DNDC model with hydrological enhancements

    Get PDF
    The degradation of water quality has been observed worldwide, and inputs of nitrogen (N), along with other nutrients, play a key role in the process of contamination. The quantification of N loading from non-point sources at a watershed scale has long been a challenge. Process-based models have been developed to address this problem. Because N loading from non-point sources result from interactions between biogeochemical and hydrological processes, a model framework must include both types of processes if it is to be useful. This paper reports the results of a study in which we integrated two fundamental hydrologic features, the SCS (Soil Conservation Service) curve function and the MUSLE (Modified Universal Soil Loss), into a biogeochemical model, the DNDC. The SCS curve equation and the MUSLE are widely used in hydrological models for calculating surface runoff and soil erosion. Equipped with the new added hydrologic features, DNDC was substantially enhanced with the new capacity of simulating both vertical and horizontal movements of water and N at a watershed scale. A long-term experimental watershed in Southwest China was selected to test the new version of the DNDC. The target watershed\u27s 35.1 ha of territory encompass 19.3 ha of croplands, 11.0 ha of forest lands, 1.1 ha of grassplots, and 3.7 ha of residential areas. An input database containing topographic data, meteorological conditions, soil properties, vegetation information, and management applications was established and linked to the enhanced DNDC. Driven by the input database, the DNDC simulated the surface runoff flow, the subsurface leaching flow, the soil erosion, and the N loadings from the target watershed. The modeled water flow, sediment yield, and N loading from the entire watershed were compared with observations from the watershed and yielded encouraging results. The sources of N loading were identified by using the results of the model. In 2008, the modeled runoff-induced loss of total N from the watershed was 904 kg N yr−1, of which approximately 67 % came from the croplands. The enhanced DNDC model also estimated the watershed-scale N losses (1391 kg N yr−1) from the emissions of the N-containing gases (ammonia, nitrous oxide, nitric oxide, and dinitrogen). Ammonia volatilization (1299 kg N yr−1) dominated the gaseous N losses. The study indicated that process-based biogeochemical models such as the DNDC could contribute more effectively to watershed N loading studies if the hydrological components of the models were appropriately enhanced
    • 

    corecore