2,092 research outputs found

    Context-driven progressive enhancement of mobile web applications: a multicriteria decision-making approach

    Get PDF
    Personal computing has become all about mobile and embedded devices. As a result, the adoption rate of smartphones is rapidly increasing and this trend has set a need for mobile applications to be available at anytime, anywhere and on any device. Despite the obvious advantages of such immersive mobile applications, software developers are increasingly facing the challenges related to device fragmentation. Current application development solutions are insufficiently prepared for handling the enormous variety of software platforms and hardware characteristics covering the mobile eco-system. As a result, maintaining a viable balance between development costs and market coverage has turned out to be a challenging issue when developing mobile applications. This article proposes a context-aware software platform for the development and delivery of self-adaptive mobile applications over the Web. An adaptive application composition approach is introduced, capable of autonomously bypassing context-related fragmentation issues. This goal is achieved by incorporating and validating the concept of fine-grained progressive application enhancements based on a multicriteria decision-making strategy

    Keeping Context In Mind: Automating Mobile App Access Control with User Interface Inspection

    Full text link
    Recent studies observe that app foreground is the most striking component that influences the access control decisions in mobile platform, as users tend to deny permission requests lacking visible evidence. However, none of the existing permission models provides a systematic approach that can automatically answer the question: Is the resource access indicated by app foreground? In this work, we present the design, implementation, and evaluation of COSMOS, a context-aware mediation system that bridges the semantic gap between foreground interaction and background access, in order to protect system integrity and user privacy. Specifically, COSMOS learns from a large set of apps with similar functionalities and user interfaces to construct generic models that detect the outliers at runtime. It can be further customized to satisfy specific user privacy preference by continuously evolving with user decisions. Experiments show that COSMOS achieves both high precision and high recall in detecting malicious requests. We also demonstrate the effectiveness of COSMOS in capturing specific user preferences using the decisions collected from 24 users and illustrate that COSMOS can be easily deployed on smartphones as a real-time guard with a very low performance overhead.Comment: Accepted for publication in IEEE INFOCOM'201

    Automating Test Case Generation for Android Applications using Model-based Testing

    Get PDF
    Testing of mobile applications (apps) has its quirks as numerous events are required to be tested. Mobile apps testing, being an evolving domain, carries certain challenges that should be accounted for in the overall testing process. Since smartphone apps are moderate in size so we consider that model-based testing (MBT) using state machines and statecharts could be a promising option for ensuring maximum coverage and completeness of test cases. Using model-based testing approach, we can automate the tedious phase of test case generation, which not only saves time of the overall testing process but also minimizes defects and ensures maximum test case coverage and completeness. In this paper, we explore and model the most critical modules of the mobile app for generating test cases to ascertain the efficiency and impact of using model-based testing. Test cases for the targeted model of the application under test were generated on a real device. The experimental results indicate that our framework reduced the time required to execute all the generated test cases by 50%. Experimental setup and results are reported herein

    Using Multiple Feature Models to Design Applications for Mobile Phones

    Get PDF
    International audienceThe design of a mobile phone application is a tedious task according to its intrinsic variability. Software designers must take into account in their development process the versatility of available platforms (e.g., Android, iPhone). In addition to this, the variety of existing devices and their divergences (e.g., frontal camera, GPS) introduce another layer of com- plexity in the development process. These two dimensions can be formalized as Software Product Lines (SPL), inde- pendently defined. In this paper, we use a dedicated meta- model to bridge the gap between an application SPL and a mobile device one. This meta-model is also the support for the product derivation process. The approach is imple- mented in a framework named ApplIDE, and is used to successfully derive customer relationship management soft- ware on different devices

    Smart Geographic object: Toward a new understanding of GIS Technology in Ubiquitous Computing

    Get PDF
    One of the fundamental aspects of ubiquitous computing is the instrumentation of the real world by smart devices. This instrumentation constitutes an opportunity to rethink the interactions between human beings and their environment on the one hand, and between the components of this environment on the other. In this paper we discuss what this understanding of ubiquitous computing can bring to geographic science and particularly to GIS technology. Our main idea is the instrumentation of the geographic environment through the instrumentation of geographic objects composing it. And then investigate how this instrumentation can meet the current limitations of GIS technology, and offers a new stage of rapprochement between the earth and its abstraction. As result, the current research work proposes a new concept we named Smart Geographic Object SGO. The latter is a convergence point between the smart objects and geographic objects, two concepts appertaining respectively to

    Analyzing Android applications for specifications and bugs

    Get PDF
    Android has become one of the leader operating systems for smartphones. Moreover, Android has a big community of developers with over 696500 applications on its market. However, given the complexity of the system, bugs are very common on Android applications--such as security vulnerabilities and energy bugs. Normally Android applications are written using the Java programming language. In contrast to most Java applications, Android applications does not have a single entry point (main function). In addition, these applications can use some system calls and receive events from external entities (such as the user) that affect how their control flows. Therefore, a model of the Android system must be defined in order to understand the behavior of Android applications and define how their control flows. In this thesis, two approaches to define the behavior of Android applications are studied. The first approach is an intra-component analysis that take take in account just the lifecycle of the main components in Android to define control flow of the applications. This approach is evaluated applying a specification miner for energy related specifications on 12 applications from the Android market. We were able to mine 91 specifications on all the applications and 41 of them were validated. For 50% of the applications analyzed, the analysis had less than 40% of false positives specifications. However, for the rest of the applications, the interaction between components was a important factor that increased the false positives. Therefore, the second approach is an inter-component approach that takes in account both, the lifecycle of components and interaction between components to define the control flow of Android applications. We evaluate the approach checking the percentage of code coverage on 8 applications from the Google market. The results are promising with an average coverage of 67%. In addition, we were able to identify bugs related to violations of constraints regarding intecomponent interactions
    corecore