15,201 research outputs found

    Retinal blood vessel segmentation: methods and implementations

    Get PDF
    Since the retinal blood vessel has been acknowledged as an indispensable element in both ophthalmological and cardiovascular disease diagnosis, the accurate segmentation of the retinal vessel tree has become the prerequisite step for automatic or computer-aided diagnosis systems. This thesis, therefore, has investigated different works of image segmentation algorithms and techniques, including unsupervised and supervised methods. Further, the thesis has developed and implemented two systems of the accurate retinal vessel segmentation. The methodologies explained and analyzed in this thesis, have been selected as the most efficient approaches to achieve higher precision, better robustness, and faster execution speed, to meet the strict standard of the modern medical imaging. Based on the intensive investigation and experiments, this thesis has proposed two outstanding implementations of the retinal blood vessel segmentation. The first implementation focuses on the fast, accurate and robust extraction of the retinal vessels using unsupervised techniques, by applying morphology-based global thresholding to draw the retinal venule structure and centerline detection to extract the capillaries. Besides, this system has been designed to minimize the computing complexity and to process multiple independent procedures in parallel. The second proposed system has especially focused on robustness and accuracy in regardless of execution time. This method has utilized the full convolutional neural network trained from a pre-trained semantic segmentation model, which is also called the transfer deep learning. This proposed method has simplified the typical retinal vessel segmentation problem from full-size image segmentation to regional vessel element recognition. Both of the implementations have outperformed their related works and have presented a remarkable scientific value for future computer-aided diagnosis applications. What’s more, this thesis is also a research guide which provide readers with the comprehensive knowledge on how to research on the task of retinal vessel segmentation

    Retinal blood vessel segmentation: methods and implementations

    Get PDF
    Since the retinal blood vessel has been acknowledged as an indispensable element in both ophthalmological and cardiovascular disease diagnosis, the accurate segmentation of the retinal vessel tree has become the prerequisite step for automatic or computer-aided diagnosis systems. This thesis, therefore, has investigated different works of image segmentation algorithms and techniques, including unsupervised and supervised methods. Further, the thesis has developed and implemented two systems of the accurate retinal vessel segmentation. The methodologies explained and analyzed in this thesis, have been selected as the most efficient approaches to achieve higher precision, better robustness, and faster execution speed, to meet the strict standard of the modern medical imaging. Based on the intensive investigation and experiments, this thesis has proposed two outstanding implementations of the retinal blood vessel segmentation. The first implementation focuses on the fast, accurate and robust extraction of the retinal vessels using unsupervised techniques, by applying morphology-based global thresholding to draw the retinal venule structure and centerline detection to extract the capillaries. Besides, this system has been designed to minimize the computing complexity and to process multiple independent procedures in parallel. The second proposed system has especially focused on robustness and accuracy in regardless of execution time. This method has utilized the full convolutional neural network trained from a pre-trained semantic segmentation model, which is also called the transfer deep learning. This proposed method has simplified the typical retinal vessel segmentation problem from full-size image segmentation to regional vessel element recognition. Both of the implementations have outperformed their related works and have presented a remarkable scientific value for future computer-aided diagnosis applications. What’s more, this thesis is also a research guide which provide readers with the comprehensive knowledge on how to research on the task of retinal vessel segmentation

    Retinal blood vessel segmentation: methods and implementations

    Get PDF
    Since the retinal blood vessel has been acknowledged as an indispensable element in both ophthalmological and cardiovascular disease diagnosis, the accurate segmentation of the retinal vessel tree has become the prerequisite step for automatic or computer-aided diagnosis systems. This thesis, therefore, has investigated different works of image segmentation algorithms and techniques, including unsupervised and supervised methods. Further, the thesis has developed and implemented two systems of the accurate retinal vessel segmentation. The methodologies explained and analyzed in this thesis, have been selected as the most efficient approaches to achieve higher precision, better robustness, and faster execution speed, to meet the strict standard of the modern medical imaging. Based on the intensive investigation and experiments, this thesis has proposed two outstanding implementations of the retinal blood vessel segmentation. The first implementation focuses on the fast, accurate and robust extraction of the retinal vessels using unsupervised techniques, by applying morphology-based global thresholding to draw the retinal venule structure and centerline detection to extract the capillaries. Besides, this system has been designed to minimize the computing complexity and to process multiple independent procedures in parallel. The second proposed system has especially focused on robustness and accuracy in regardless of execution time. This method has utilized the full convolutional neural network trained from a pre-trained semantic segmentation model, which is also called the transfer deep learning. This proposed method has simplified the typical retinal vessel segmentation problem from full-size image segmentation to regional vessel element recognition. Both of the implementations have outperformed their related works and have presented a remarkable scientific value for future computer-aided diagnosis applications. What’s more, this thesis is also a research guide which provide readers with the comprehensive knowledge on how to research on the task of retinal vessel segmentation

    Automated Fovea Detection Based on Unsupervised Retinal Vessel Segmentation Method

    Get PDF
    The Computer Assisted Diagnosis systems could save workloads and give objective diagnostic to ophthalmologists. At first level of automated screening of systems feature extraction is the fundamental step. One of these retinal features is the fovea. The fovea is a small fossa on the fundus, which is represented by a deep-red or red-brown color in color retinal images. By observing retinal images, it appears that the main vessels diverge from the optic nerve head and follow a specific course that can be geometrically modeled as a parabola, with a common vertex inside the optic nerve head and the fovea located along the apex of this parabola curve. Therefore, based on this assumption, the main retinal blood vessels are segmented and fitted to a parabolic model. With respect to the core vascular structure, we can thus detect fovea in the fundus images. For the vessel segmentation, our algorithm addresses the image locally where homogeneity of features is more likely to occur. The algorithm is composed of 4 steps: multi-overlapping windows, local Radon transform, vessel validation, and parabolic fitting. In order to extract blood vessels, sub-vessels should be extracted in local windows. The high contrast between blood vessels and image background in the images cause the vessels to be associated with peaks in the Radon space. The largest vessels, using a high threshold of the Radon transform, determines the main course or overall configuration of the blood vessels which when fitted to a parabola, leads to the future localization of the fovea. In effect, with an accurate fit, the fovea normally lies along the slope joining the vertex and the focus. The darkest region along this line is the indicative of the fovea. To evaluate our method, we used 220 fundus images from a rural database (MUMS-DB) and one public one (DRIVE). The results show that, among 20 images of the first public database (DRIVE) we detected fovea in 85% of them. Also for the MUMS-DB database among 200 images we detect fovea correctly in 83% on them

    Retinal blood vessels extraction using probabilistic modelling

    Get PDF
    © 2014 Kaba et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.The analysis of retinal blood vessels plays an important role in detecting and treating retinal diseases. In this review, we present an automated method to segment blood vessels of fundus retinal image. The proposed method could be used to support a non-intrusive diagnosis in modern ophthalmology for early detection of retinal diseases, treatment evaluation or clinical study. This study combines the bias correction and an adaptive histogram equalisation to enhance the appearance of the blood vessels. Then the blood vessels are extracted using probabilistic modelling that is optimised by the expectation maximisation algorithm. The method is evaluated on fundus retinal images of STARE and DRIVE datasets. The experimental results are compared with some recently published methods of retinal blood vessels segmentation. The experimental results show that our method achieved the best overall performance and it is comparable to the performance of human experts.The Department of Information Systems, Computing and Mathematics, Brunel University

    Measurement of retinal vessel widths from fundus images based on 2-D modeling

    Get PDF
    Changes in retinal vessel diameter are an important sign of diseases such as hypertension, arteriosclerosis and diabetes mellitus. Obtaining precise measurements of vascular widths is a critical and demanding process in automated retinal image analysis as the typical vessel is only a few pixels wide. This paper presents an algorithm to measure the vessel diameter to subpixel accuracy. The diameter measurement is based on a two-dimensional difference of Gaussian model, which is optimized to fit a two-dimensional intensity vessel segment. The performance of the method is evaluated against Brinchmann-Hansen's half height, Gregson's rectangular profile and Zhou's Gaussian model. Results from 100 sample profiles show that the presented algorithm is over 30% more precise than the compared techniques and is accurate to a third of a pixel
    corecore