1,807 research outputs found

    An approach to resource modelling in support of the life cycle engineering of enterprise systems

    Get PDF
    Enterprise modelling can facilitate the design, analysis, control and construction of contemporary enterprises which can compete in world-wide Product markets. This research involves a systematic study of enterprise modelling with a particular focus on resource modelling in support of the life cycle engineering of enterprise systems. This led to the specification and design of a framework for resource modelling. This framework was conceived to: classify resource types; identify the different functions that resource modelling can support, with respect to different life phases of enterprise systems; clarify the relationship between resource models and other modelling perspectives provide mechanisms which link resource models and other types of models; identify guidelines for the capture of information - on resources, leading to the establishment of a set of resource reference models. The author also designed and implemented a resource modelling tool which conforms to the principles laid down by the framework. This tool realises important aspects of the resource modeffing concepts so defined. Furthermore, two case studies have been carried out. One models a metal cutting environment, and the other is based on an electronics industry problem area. In this way, the feasibility of concepts embodied in the framework and the design of the resource modelling tool has been tested and evaluated. Following a literature survey and preliminary investigation, the CIMOSA enterprise modelling and integration methodology was adopted and extended within this research. Here the resource modelling tool was built by extending SEWOSA (System Engineering Workbench for Open System Architecture) and utilising the CIMBIOSYS (CINI-Building Integrated Open SYStems) integrating infrastructure. The main contributions of the research are that: a framework for resource modelling has been established; means and mechanisms have been proposed, implemented and tested which link and coordinate different modelling perspectives into an unified enterprise model; the mechanisms and resource models generated by this research support each Pfe phase of systems engineering projects and demonstrate benefits by increasing the degree to which the derivation process among models is automated

    The DS-Pnet modeling formalism for cyber-physical system development

    Get PDF
    This work presents the DS-Pnet modeling formalism (Dataflow, Signals and Petri nets), designed for the development of cyber-physical systems, combining the characteristics of Petri nets and dataflows to support the modeling of mixed systems containing both reactive parts and data processing operations. Inheriting the features of the parent IOPT Petri net class, including an external interface composed of input and output signals and events, the addition of dataflow operations brings enhanced modeling capabilities to specify mathematical data transformations and graphically express the dependencies between signals. Data-centric systems, that do not require reactive controllers, are designed using pure dataflow models. Component based model composition enables reusing existing components, create libraries of previously tested components and hierarchically decompose complex systems into smaller sub-systems. A precise execution semantics was defined, considering the relationship between dataflow and Petri net nodes, providing an abstraction to define the interface between reactive controllers and input and output signals, including analog sensors and actuators. The new formalism is supported by the IOPT-Flow Web based tool framework, offering tools to design and edit models, simulate model execution on the Web browser, plus model-checking and software/hardware automatic code generation tools to implement controllers running on embedded devices (C,VHDL and JavaScript). A new communication protocol was created to permit the automatic implementation of distributed cyber-physical systems composed of networks of remote components communicating over the Internet. The editor tool connects directly to remote embedded devices running DS-Pnet models and may import remote components into new models, contributing to simplify the creation of distributed cyber-physical applications, where the communication between distributed components is specified just by drawing arcs. Several application examples were designed to validate the proposed formalism and the associated framework, ranging from hardware solutions, industrial applications to distributed software applications

    Service-oriented SCADA and MES supporting petri nets based orchestrated automation systems

    Get PDF
    The fusion of mechatronics, communication, control and information technologies has allowed the introduction of new automation paradigms into the production environment. The virtualization of the production environment facilitated by the application of the service-oriented architecture paradigm is one of major outcomes of that fusion. On one side, service-oriented automation works based on exposition, subscription and use of automation functions represented by e.g. web services. On the other side, the evolution of traditional industrial systems, particularly in the production area, as a response to architectural and behavioural (functional) viewpoints of the ISA95 enterprise architecture, where a close inter-relation between SCADA, DCS and MES systems facilitate the management and control of the production environment. Automation functions are increasingly performed by the composition and orchestration of services. Among other methods, the application of formal Petri net based orchestration approaches is being industrially established. This paper presents the major characteristics that such a Petri net based orchestration presents when it is developed, implemented and deployed in an industrial environmentThe research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 258682 (IMC-AESOP: ArchitecturE for Service-Oriented Process - Monitoring and Control) and 224053 (CONET: Cooperating Objects NETwork of excellence)

    Applications of RFID Technology in the Complex Product Assembly Executive Process

    Get PDF

    An approach to open virtual commissioning for component-based automation

    Get PDF
    Increasing market demands for highly customised products with shorter time-to-market and at lower prices are forcing manufacturing systems to be built and operated in a more efficient ways. In order to overcome some of the limitations in traditional methods of automation system engineering, this thesis focuses on the creation of a new approach to Virtual Commissioning (VC). In current VC approaches, virtual models are driven by pre-programmed PLC control software. These approaches are still time-consuming and heavily control expertise-reliant as the required programming and debugging activities are mainly performed by control engineers. Another current limitation is that virtual models validated during VC are difficult to reuse due to a lack of tool-independent data models. Therefore, in order to maximise the potential of VC, there is a need for new VC approaches and tools to address these limitations. The main contributions of this research are: (1) to develop a new approach and the related engineering tool functionality for directly deploying PLC control software based on component-based VC models and reusable components; and (2) to build tool-independent common data models for describing component-based virtual automation systems in order to enable data reusability. [Continues.

    Component-based control system development for agile manufacturing machine systems

    Get PDF
    It is now a common sense that manufactures including machine suppliers and system integrators of the 21 st century will need to compete on global marketplaces, which are frequently shifting and fragmenting, with new technologies continuously emerging. Future production machines and manufacturing systems need to offer the "agility" required in providing responsiveness to product changes and the ability to reconfigure. The primary aim for this research is to advance studies in machine control system design, in the context of the European project VIR-ENG - "Integrated Design, Simulation and Distributed Control of Agile Modular Machinery"
    • …
    corecore