69 research outputs found

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    Advanced Technique and Future Perspective for Next Generation Optical Fiber Communications

    Get PDF
    Optical fiber communication industry has gained unprecedented opportunities and achieved rapid progress in recent years. However, with the increase of data transmission volume and the enhancement of transmission demand, the optical communication field still needs to be upgraded to better meet the challenges in the future development. Artificial intelligence technology in optical communication and optical network is still in its infancy, but the existing achievements show great application potential. In the future, with the further development of artificial intelligence technology, AI algorithms combining channel characteristics and physical properties will shine in optical communication. This reprint introduces some recent advances in optical fiber communication and optical network, and provides alternative directions for the development of the next generation optical fiber communication technology

    Optimizing total cost of ownership (TCO) for 5G multi-tenant mobile backhaul (MBH) optical transport networks

    Get PDF
    Legacy network elements are reaching end-of-life and packet-based transport networks are not efficiently optimized. In particular, high density cell architecture in future 5G networks will face big technical and financial challenges due to avalanche of traffic volume and massive growth in connected devices. Raising density and ever-increasing traffic demand within future 5G Heterogeneous Networks (HetNets) will result in huge deployment, expansion and operating costs for upcoming Mobile BackHaul (MBH) networks with flat revenue generation. Thus, the goal of this dissertation is to provide an efficient physical network planning mechanism and an optimized resource engineering tool in order to reduce the Total Cost of Ownership (TCO) and increase the generated revenues. This will help Service Providers (SPs) and Mobile Network Operators (MNOs) to improve their network scalability and maintain positive Project Profit Margins (PPM). In order to meet this goal, three key issues are required to be addressed in our framework and are summarized as follows: i) how to design and migrate to a scalable and reliable MBH network in an optimal cost?, ii) how to control the deployment and activation of the network resources in such MBH based on required traffic demand in an efficient and cost-effective way?, and iii) how to enhance the resource sharing in such network and maximize the profit margins in an efficient way? As part of our contributions to address the first issue highlighted above and to plan the MBH with reduced network TCO and improved scalability, we propose a comprehensive migration plan towards an End-to-End Integrated-Optical-Packet-Network (E2-IOPN) for SP optical transport networks. We review various empirical challenges faced by a real SP during the transformation process towards E2-IOPN as well as the implementation of an as-built plan and a high-level design (HLD) for migrating towards lower cost-per-bit GPON, MPLS-TP, OTN and next-generation DWDM technologies. Then, we propose a longer-term strategy based on SDN and NFV approach that will offer rapid end-to-end service provisioning with costefficient centralized network control. We define CapEx and OpEx cost models and drive a cost comparative study that shows the benefit and financial impact of introducing new low-cost packet-based technologies to carry traffic from legacy and new services. To address the second issue, we first introduce an algorithm based on a stochastic geometry model (Voronoi Tessellation) to more precisely define MBH zones within a geographical area and more accurately calculate required traffic demands and related MBH infrastructure. In order to optimize the deployment and activation of the network resources in the MBH in an efficient and cost-effective way, we propose a novel method called BackHauling-as-a-Service (BHaaS) for network planning and Total Cost of Ownership (TCO) analysis based on required traffic demand and a "You-pay-only-for-what-you-use" approach. Furthermore, we enhance BHaaS performance by introducing a more service-aware method called Traffic-Profile-asa- Service (TPaaS) to further drive down the costs based on yearly activated traffic profiles. Results show that BHaaS and TPaaS may enhance by 22% the project benefit compared to traditional TCO model. Finally, we introduce a new cost (CapEx and OpEx) models for 5G multi-tenant Virtualized MBH (V-MBH) as part of our contribution to address the third issue. In fact, in order to enhance the resource sharing and maximize the network profits, we drive a novel pay-as-yougrow and optimization model for the V-MBH called Virtual-Backhaul-as-a-Service (VBaaS). VBaaS can serve as a planning tool to optimize the Project Profit Margin (PPM) while considering the TCO and the yearly generated Return-on-Investment (ROI). We formulate an MNO Pricing Game (MPG) for TCO optimization to calculate the optimal Pareto-Equilibrium pricing strategy for offered Tenant Service Instances (TSI). Then, we compare CapEx, OpEx, TCO, ROI and PPM for a specific use-case known in the industry as CORD project using Traditional MBH (T-MBH) versus Virtualized MBH (V-MBH) as well as using randomized versus Pareto-Equilibrium pricing strategies. The results of our framework offer SPs and MNOs a more precise estimation of traffic demand, an optimized infrastructure planning and yearly resource deployment as well as an optimized TCO analysis (CapEx and OpEx) with enhanced pricing strategy and generated ROI. Numerical results show more than three times increase in network profitability using our proposed solutions compared with Traditional MBH (T-MBH) methods

    Modeling and Optimization of Next-Generation Wireless Access Networks

    Get PDF
    The ultimate goal of the next generation access networks is to provide all network users, whether they are fixed or mobile, indoor or outdoor, with high data rate connectivity, while ensuring a high quality of service. In order to realize this ambitious goal, delay, jitter, error rate and packet loss should be minimized: a goal that can only be achieved through integrating different technologies, including passive optical networks, 4th generation wireless networks, and femtocells, among others. This thesis focuses on medium access control and physical layers of future networks. In this regard, the first part of this thesis discusses techniques to improve the end-to-end quality of service in hybrid optical-wireless networks. In these hybrid networks, users are connected to a wireless base station that relays their data to the core network through an optical connection. Hence, by integrating wireless and optical parts of these networks, a smart scheduler can predict the incoming traffic to the optical network. The prediction data generated herein is then used to propose a traffic-aware dynamic bandwidth assignment algorithm for reducing the end-to-end delay. The second part of this thesis addresses the challenging problem of interference management in a two-tier macrocell/femtocell network. A high quality, high speed connection for indoor users is ensured only if the network has a high signal to noise ratio. A requirement that can be fulfilled with using femtocells in cellular networks. However, since femtocells generate harmful interference to macrocell users in proximity of them, careful analysis and realistic models should be developed to manage the introduced interference. Thus, a realistic model for femtocell interference outside suburban houses is proposed and several performance measures, e.g., signal to interference and noise ratio and outage probability are derived mathematically for further analysis. The quality of service of cellular networks can be degraded by several factors. For example, in industrial environments, simultaneous fading and strong impulsive noise significantly deteriorate the error rate performance. In the third part of this thesis, a technique to improve the bit error rate of orthogonal frequency division multiplexing systems in industrial environments is presented. This system is the most widely used technology in next-generation networks, and is very susceptible to impulsive noise, especially in fading channels. Mathematical analysis proves that the proposed method can effectively mitigate the degradation caused by impulsive noise and significantly improve signal to interference and noise ratio and bit error rate, even in frequency-selective fading channels

    Contributions to Vehicular Communications Systems and Schemes

    Get PDF
    La dernière décennie a marqué une grande hausse des applications véhiculaires comme une nouvelle source de revenus et un facteur de distinction dans l'industrie des véhicules. Ces applications véhiculaires sont classées en deux groupes : les applications de sécurité et les applications d'info divertissement. Le premier groupe inclue le changement intelligent de voie, l'avertissement de dangers de routes et la prévention coopérative de collision qui comprend la vidéo sur demande (VoD), la diffusion en direct, la diffusion de météo et de nouvelles et les jeux interactifs. Cependant, Il est à noter que d'une part, les applications véhiculaires d'info divertissement nécessitent une bande passante élevée et une latence relativement faible ; D'autre part, les applications de sécurité requièrent exigent un délai de bout en bout très bas et un canal de communication fiable pour la livraison des messages d'urgence. Pour satisfaire le besoin en applications efficaces, les fabricants de véhicules ainsi que la communauté académique ont introduit plusieurs applications à l’intérieur de véhicule et entre véhicule et véhicule (V2V). Sauf que, l'infrastructure du réseau sans fil n'a pas été conçue pour gérer les applications de véhicules, en raison de la haute mobilité des véhicules, de l'imprévisibilité du comportement des conducteurs et des modèles de trafic dynamiques. La relève est l'un des principaux défis des réseaux de véhicules, car la haute mobilité exige au réseau sans fil de faire la relève en un très court temps. De plus, l'imprévisibilité du comportement du conducteur cause l'échec des protocoles proactifs traditionnels de relève, car la prédiction du prochain routeur peut changer en fonction de la décision du conducteur. Aussi, le réseau de véhicules peut subir une mauvaise qualité de service dans les régions de relève en raison d'obstacles naturels, de véhicules de grande taille ou de mauvaises conditions météorologiques. Cette thèse se concentre sur la relève dans l'environnement des véhicules et son effet sur les applications véhiculaires. Nous proposons des solutions pratiques pour les réseaux actuellement déployés, principalement les réseaux LTE, l'infrastructure véhicule à véhicule (V2V) ainsi que les outils efficaces d’émulateurs de relèves dans les réseaux véhiculaires.----------ABSTRACT: The last decade marked the rise of vehicular applications as a new source of revenue and a key differentiator in the vehicular industry. Vehicular Applications are classified into safety and infotainment applications. The former include smart lane change, road hazard warning, and cooperative collision avoidance; however, the latter include Video on Demand (VoD), live streaming, weather and news broadcast, and interactive games. On one hand, infotainment vehicular applications require high bandwidth and relatively low latency; on the other hand, safety applications requires a very low end to end delay and a reliable communication channel to deliver emergency messages. To satisfy the thirst for practical applications, vehicle manufacturers along with research institutes introduced several in-vehicle and Vehicle to Vehicle (V2V) applications. However, the wireless network infrastructure was not designed to handle vehicular applications, due to the high mobility of vehicles, unpredictability of drivers’ behavior, and dynamic traffic patterns. Handoff is one of the main challenges of vehicular networks since the high mobility puts pressure on the wireless network to finish the handoff within a short period. Moreover, the unpredictability of driver behavior causes the traditional proactive handoff protocols to fail, since the prediction of the next router may change based on the driver’s decision. Moreover, the vehicular network may suffer from bad Quality of Service (QoS) in the regions of handoff due to natural obstacles, large vehicles, or weather conditions. This thesis focuses on the handoff on the vehicular environment and its effect on the vehicular applications. We consider practical solutions for the currently deployed networks mainly Long Term Evolution (LTE) networks, the Vehicle to Vehicle (V2V) infrastructure, and the tools that can be used effectively to emulate handoff on the vehicular networks

    Scalable high-capacity high-fan-out optical networks for constrained environments

    Get PDF
    The investigations carried out as part of the dissertation address the architecture and application of optical access networks pertaining to high-capacity and high fan-out applications such as in-flight entertainment (IFE) and video-gaming environment. High-capacity and high-fan-out optical networks have a multitude of applications such as expo-centers, train area networks (TAN), video gaming competitions and other applications that require large number of connected users. For the purpose of keeping the scope of the dissertation within limit however, we have concentrated this work on IFE systems. IFE systems present unique challenges at physical and application layers alike. In-flight entertainment (IFE) systems have been a part of passengers' experience for a while now. Currently available systems can be considered a bare-bone at best due to lack of adequate performance and support infrastructure. According to electronic arts (EA), one of the largest developers of video games in the world, an increase in demand for electronically distributed video games will exceed boxed games in just a matter of few years. This also shows a shifting trend towards the electronic distribution of video game content as opposed to physical distribution. Against the same backdrop, the dissertation project involved defining a novel system architecture and capacity based on the requirements for development of novel physical layer architecture utilizing optical networks for high-speed and high-fan-out distribution of content. At the physical layer of the stacked communication model a novel high-fan-out optical network was proposed and simulated for high data-rates. Having defined the physical layer, protocol stack was identified through rigorous observations and data traffic analysis from a large set of traffic traces obtained from various sources in order to understand the distribution and behavior of video game related traffic compared with regular internet traffic. Data requirements were laid down based on analysis keeping in mind that bandwidth requirements are increasing at a tremendous pace and that the network should be able to support future high-definition and 3D gaming as well. Based on the data analysis, analytical models and latency analysis models were also developed for bandwidth allocation in the high-fan-out network architectures. Analytical modeling gives an insight into the performance of the technique as a function of incoming traffic whereas latency analysis exposes the delay factors involved in running the technique over time. "State-full bandwidth allocation" (SBA) was proposed as part of the network layer design for upstream transmission. The novel technique involves keeping state information from previous states for future allocation. The results show that the proposed high-fan-out high-capacity physical layer architecture can be used to distribute video-gaming related content. Also, latency analysis and design and development of a novel SBA algorithm were carried out. Results were quiet promising, in that; a large number of users can be supported on the same single channel network. SBA criteria can be applied to multi-channel networks such as the physical architecture proposed / simulated and investigated in this project. In summary, the project involved design of a novel physical layer; network layer and protocol stack of the communication model and verification by simulations and mathematical modeling while adhering to application layer requirements

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions
    corecore