5 research outputs found

    A Robotic Torso Joint With Adjustable Linear Spring Mechanism for Natural Dynamic Motions in a Differential-Elastic Arrangement

    Get PDF
    To be operated in unknown or complex environments, modern robots have to fulfill various challenging criteria. Among them, one finds requirements such as a high level of robustness to withstand impacts and the capabilities to physically interact in a safe manner. One way to achieve that is to integrate variable-stiffness actuators into the systems, enabling compliant behavior through the elastic components and providing the additional adaptability of the impedance. Here, we introduce a novel adjustable linear stiffness joint mounted in a differential-elastic arrangement. The mechanism is integrated into the anthropomorphic upper body of the DLR David robot and responsible for the spinal rotation. Consequently, the actuator is crucial for the overall workspace of the robot and the realization of energy-efficient natural motions such as in dynamic running. The proposed hardware setup is experimentally validated in terms of the linearity in the spring characteristics, intrinsic damping, the excitation of resonance frequencies, and the ability to alter these resonance frequencies through stiffness adaptation during dynamic motions

    Whole-Body Impedance Control of Wheeled Humanoid Robots

    Full text link

    A Modally Adaptive Control for Multi-Contact Cyclic Motions in Compliantly Actuated Robotic Systems

    Get PDF
    Compliant actuators in robotic systems improve robustness against rigid impacts and increase the performance and efficiency of periodic motions such as hitting, jumping and running. However, in the case of rigid impacts, as they can occur during hitting or running, the system behavior is changed compared to free motions which turns the control into a challenging task. We introduce a controller that excites periodic motions along the direction of an intrinsic mechanical oscillation mode. The controller requires no model knowledge and adapts to a modal excitation by means of measurement of the states. We experimentally show that the controller is able to stabilize a hitting motion on the variable stiffness robot DLR Hand Arm System. Further, we demonstrate by simulation that the approach applies for legged robotic systems with compliantly actuated joints. The controlled system can approach different modes of motion such as jumping, hopping and running, and thereby, it is able to handle the repeated occurrence of robot-ground contacts
    corecore