2,845 research outputs found

    A Unifying review of linear gaussian models

    Get PDF
    Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observations and derivations made by many previous authors and introducing a new way of linking discrete and continuous state models using a simple nonlinearity. Through the use of other nonlinearities, we show how independent component analysis is also a variation of the same basic generative model.We show that factor analysis and mixtures of gaussians can be implemented in autoencoder neural networks and learned using squared error plus the same regularization term. We introduce a new model for static data, known as sensible principal component analysis, as well as a novel concept of spatially adaptive observation noise. We also review some of the literature involving global and local mixtures of the basic models and provide pseudocode for inference and learning for all the basic models

    Interactions between gaussian processes and bayesian estimation

    Get PDF
    L’apprentissage (machine) de modèle et l’estimation d’état sont cruciaux pour interpréter les phénomènes sous-jacents à de nombreuses applications du monde réel. Toutefois, il est souvent difficile d’apprendre le modèle d’un système et de capturer les états latents, efficacement et avec précision, en raison du fait que la connaissance du monde est généralement incertaine. Au cours des dernières années, les approches d’estimation et de modélisation bayésiennes ont été extensivement étudiées afin que l’incertain soit réduit élégamment et de manière flexible. Dans la pratique cependant, différentes limitations au niveau de la modélisation et de l’estimation bayésiennes peuvent détériorer le pouvoir d’interprétation bayésienne. Ainsi, la performance de l’estimation est souvent limitée lorsque le modèle de système manque de souplesse ou/et est partiellement inconnu. De même, la performance de la modélisation est souvent restreinte lorsque l’estimateur Bayésien est inefficace. Inspiré par ces faits, nous proposons d’étudier dans cette thèse, les connections possibles entre modélisation bayésienne (via le processus gaussien) et l’estimation bayésienne (via le filtre de Kalman et les méthodes de Monte Carlo) et comment on pourrait améliorer l’une en utilisant l’autre. À cet effet, nous avons d’abord vu de plus près comment utiliser les processus gaussiens pour l’estimation bayésienne. Dans ce contexte, nous avons utilisé le processus gaussien comme un prior non-paramétrique des modèles et nous avons montré comment cela permettait d’améliorer l’efficacité et la précision de l’estimation bayésienne. Ensuite, nous nous somme intéressé au fait de savoir comment utiliser l’estimation bayésienne pour le processus gaussien. Dans ce cadre, nous avons utilisé différentes estimations bayésiennes comme le filtre de Kalman et les filtres particulaires en vue d’améliorer l’inférence au niveau du processus gaussien. Ceci nous a aussi permis de capturer différentes propriétés au niveau des données d’entrée. Finalement, on s’est intéressé aux interactions dynamiques entre estimation bayésienne et processus gaussien. On s’est en particulier penché sur comment l’estimation bayésienne et le processus gaussien peuvent ”travailler” de manière interactive et complémentaire de façon à améliorer à la fois le modèle et l’estimation. L’efficacité de nos approches, qui contribuent à la fois au processus gaussien et à l’estimation bayésienne, est montrée au travers d’une analyse mathématique rigoureuse et validée au moyen de différentes expérimentations reflétant des applications réelles.Model learning and state estimation are crucial to interpret the underlying phenomena in many real-world applications. However, it is often challenging to learn the system model and capture the latent states accurately and efficiently due to the fact that the knowledge of the world is highly uncertain. During the past years, Bayesian modeling and estimation approaches have been significantly investigated so that the uncertainty can be elegantly reduced in a flexible probabilistic manner. In practice, however, several drawbacks in both Bayesian modeling and estimation approaches deteriorate the power of Bayesian interpretation. On one hand, the estimation performance is often limited when the system model lacks in flexibility and/or is partially unknown. On the other hand, the modeling performance is often restricted when a Bayesian estimator is not efficient and/or accurate. Inspired by these facts, we propose Interactions Between Gaussian Processes and Bayesian Estimation where we investigate the novel connections between Bayesian model (Gaussian processes) and Bayesian estimator (Kalman filter and Monte Carlo methods) in different directions to address a number of potential difficulties in modeling and estimation tasks. Concretely, we first pay our attention to Gaussian Processes for Bayesian Estimation where a Gaussian process (GP) is used as an expressive nonparametric prior for system models to improve the accuracy and efficiency of Bayesian estimation. Then, we work on Bayesian Estimation for Gaussian Processes where a number of Bayesian estimation approaches, especially Kalman filter and particle filters, are used to speed up the inference efficiency of GP and also capture the distinct input-dependent data properties. Finally, we investigate Dynamical Interaction Between Gaussian Processes and Bayesian Estimation where GP modeling and Bayesian estimation work in a dynamically interactive manner so that GP learner and Bayesian estimator are positively complementary to improve the performance of both modeling and estimation. Through a number of mathematical analysis and experimental demonstrations, we show the effectiveness of our approaches which contribute to both GP and Bayesian estimation

    Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models

    Full text link
    We propose a new class of filtering and smoothing methods for inference in high-dimensional, nonlinear, non-Gaussian, spatio-temporal state-space models. The main idea is to combine the ensemble Kalman filter and smoother, developed in the geophysics literature, with state-space algorithms from the statistics literature. Our algorithms address a variety of estimation scenarios, including on-line and off-line state and parameter estimation. We take a Bayesian perspective, for which the goal is to generate samples from the joint posterior distribution of states and parameters. The key benefit of our approach is the use of ensemble Kalman methods for dimension reduction, which allows inference for high-dimensional state vectors. We compare our methods to existing ones, including ensemble Kalman filters, particle filters, and particle MCMC. Using a real data example of cloud motion and data simulated under a number of nonlinear and non-Gaussian scenarios, we show that our approaches outperform these existing methods
    • …
    corecore