1,798 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Rigid and Articulated Point Registration with Expectation Conditional Maximization

    Get PDF
    This paper addresses the issue of matching rigid and articulated shapes through probabilistic point registration. The problem is recast into a missing data framework where unknown correspondences are handled via mixture models. Adopting a maximum likelihood principle, we introduce an innovative EM-like algorithm, namely the Expectation Conditional Maximization for Point Registration (ECMPR) algorithm. The algorithm allows the use of general covariance matrices for the mixture model components and improves over the isotropic covariance case. We analyse in detail the associated consequences in terms of estimation of the registration parameters, and we propose an optimal method for estimating the rotational and translational parameters based on semi-definite positive relaxation. We extend rigid registration to articulated registration. Robustness is ensured by detecting and rejecting outliers through the addition of a uniform component to the Gaussian mixture model at hand. We provide an in-depth analysis of our method and we compare it both theoretically and experimentally with other robust methods for point registration

    Bayesian Non-Exhaustive Classification A Case Study: Online Name Disambiguation using Temporal Record Streams

    Get PDF
    The name entity disambiguation task aims to partition the records of multiple real-life persons so that each partition contains records pertaining to a unique person. Most of the existing solutions for this task operate in a batch mode, where all records to be disambiguated are initially available to the algorithm. However, more realistic settings require that the name disambiguation task be performed in an online fashion, in addition to, being able to identify records of new ambiguous entities having no preexisting records. In this work, we propose a Bayesian non-exhaustive classification framework for solving online name disambiguation task. Our proposed method uses a Dirichlet process prior with a Normal * Normal * Inverse Wishart data model which enables identification of new ambiguous entities who have no records in the training data. For online classification, we use one sweep Gibbs sampler which is very efficient and effective. As a case study we consider bibliographic data in a temporal stream format and disambiguate authors by partitioning their papers into homogeneous groups. Our experimental results demonstrate that the proposed method is better than existing methods for performing online name disambiguation task.Comment: to appear in CIKM 201
    • …
    corecore