17,946 research outputs found

    Weighted universal image compression

    Get PDF
    We describe a general coding strategy leading to a family of universal image compression systems designed to give good performance in applications where the statistics of the source to be compressed are not available at design time or vary over time or space. The basic approach considered uses a two-stage structure in which the single source code of traditional image compression systems is replaced with a family of codes designed to cover a large class of possible sources. To illustrate this approach, we consider the optimal design and use of two-stage codes containing collections of vector quantizers (weighted universal vector quantization), bit allocations for JPEG-style coding (weighted universal bit allocation), and transform codes (weighted universal transform coding). Further, we demonstrate the benefits to be gained from the inclusion of perceptual distortion measures and optimal parsing. The strategy yields two-stage codes that significantly outperform their single-stage predecessors. On a sequence of medical images, weighted universal vector quantization outperforms entropy coded vector quantization by over 9 dB. On the same data sequence, weighted universal bit allocation outperforms a JPEG-style code by over 2.5 dB. On a collection of mixed test and image data, weighted universal transform coding outperforms a single, data-optimized transform code (which gives performance almost identical to that of JPEG) by over 6 dB

    A modulation property of time-frequency derivatives of filtered phase and its application to aperiodicity and fo estimation

    Full text link
    We introduce a simple and linear SNR (strictly speaking, periodic to random power ratio) estimator (0dB to 80dB without additional calibration/linearization) for providing reliable descriptions of aperiodicity in speech corpus. The main idea of this method is to estimate the background random noise level without directly extracting the background noise. The proposed method is applicable to a wide variety of time windowing functions with very low sidelobe levels. The estimate combines the frequency derivative and the time-frequency derivative of the mapping from filter center frequency to the output instantaneous frequency. This procedure can replace the periodicity detection and aperiodicity estimation subsystems of recently introduced open source vocoder, YANG vocoder. Source code of MATLAB implementation of this method will also be open sourced.Comment: 8 pages 9 figures, Submitted and accepted in Interspeech201

    The listening talker: A review of human and algorithmic context-induced modifications of speech

    Get PDF
    International audienceSpeech output technology is finding widespread application, including in scenarios where intelligibility might be compromised - at least for some listeners - by adverse conditions. Unlike most current algorithms, talkers continually adapt their speech patterns as a response to the immediate context of spoken communication, where the type of interlocutor and the environment are the dominant situational factors influencing speech production. Observations of talker behaviour can motivate the design of more robust speech output algorithms. Starting with a listener-oriented categorisation of possible goals for speech modification, this review article summarises the extensive set of behavioural findings related to human speech modification, identifies which factors appear to be beneficial, and goes on to examine previous computational attempts to improve intelligibility in noise. The review concludes by tabulating 46 speech modifications, many of which have yet to be perceptually or algorithmically evaluated. Consequently, the review provides a roadmap for future work in improving the robustness of speech output

    Speech Synthesis Based on Hidden Markov Models

    Get PDF
    corecore