10,617 research outputs found

    The Architecture of MEG Simulation and Analysis Software

    Full text link
    MEG (Mu to Electron Gamma) is an experiment dedicated to search for the μ+e+γ\mu^+ \rightarrow e^+\gamma decay that is strongly suppressed in the Standard Model but predicted in several Super Symmetric extensions of it at an accessible rate. MEG is a small-size experiment (5060\approx 50-60 physicists at any time) with a life span of about 10 years. The limited human resource available, in particular in the core offline group, emphasized the importance of reusing software and exploiting existing expertise. Great care has been devoted to provide a simple system that hides implementation details to the average programmer. That allowed many members of the collaboration to contribute to the development of the software of the experiment with limited programming skill. The offline software is based on two frameworks: {\bf REM} in FORTRAN 77 used for the event generation and detector simulation package {\bf GEM}, based on GEANT 3, and {\bf ROME} in C++ used in the readout simulation {\bf Bartender} and in the reconstruction and analysis program {\bf Analyzer}. Event display in the simulation is based on GEANT 3 graphic libraries and in the reconstruction on ROOT graphic libraries. Data are stored in different formats in various stage of the processing. The frameworks include utilities for input/output, database handling and format conversion transparent to the user.Comment: Presented at the IEEE NSS Knoxville, 2010 Revised according to referee's remarks Accepted by European Physical Journal Plu

    Synesthesia: Detecting Screen Content via Remote Acoustic Side Channels

    Full text link
    We show that subtle acoustic noises emanating from within computer screens can be used to detect the content displayed on the screens. This sound can be picked up by ordinary microphones built into webcams or screens, and is inadvertently transmitted to other parties, e.g., during a videoconference call or archived recordings. It can also be recorded by a smartphone or "smart speaker" placed on a desk next to the screen, or from as far as 10 meters away using a parabolic microphone. Empirically demonstrating various attack scenarios, we show how this channel can be used for real-time detection of on-screen text, or users' input into on-screen virtual keyboards. We also demonstrate how an attacker can analyze the audio received during video call (e.g., on Google Hangout) to infer whether the other side is browsing the web in lieu of watching the video call, and which web site is displayed on their screen

    Design of Resistive Synaptic Devices and Array Architectures for Neuromorphic Computing

    Get PDF
    abstract: Over the past few decades, the silicon complementary-metal-oxide-semiconductor (CMOS) technology has been greatly scaled down to achieve higher performance, density and lower power consumption. As the device dimension is approaching its fundamental physical limit, there is an increasing demand for exploration of emerging devices with distinct operating principles from conventional CMOS. In recent years, many efforts have been devoted in the research of next-generation emerging non-volatile memory (eNVM) technologies, such as resistive random access memory (RRAM) and phase change memory (PCM), to replace conventional digital memories (e.g. SRAM) for implementation of synapses in large-scale neuromorphic computing systems. Essentially being compact and “analog”, these eNVM devices in a crossbar array can compute vector-matrix multiplication in parallel, significantly speeding up the machine/deep learning algorithms. However, non-ideal eNVM device and array properties may hamper the learning accuracy. To quantify their impact, the sparse coding algorithm was used as a starting point, where the strategies to remedy the accuracy loss were proposed, and the circuit-level design trade-offs were also analyzed. At architecture level, the parallel “pseudo-crossbar” array to prevent the write disturbance issue was presented. The peripheral circuits to support various parallel array architectures were also designed. One key component is the read circuit that employs the principle of integrate-and-fire neuron model to convert the analog column current to digital output. However, the read circuit is not area-efficient, which was proposed to be replaced with a compact two-terminal oscillation neuron device that exhibits metal-insulator-transition phenomenon. To facilitate the design exploration, a circuit-level macro simulator “NeuroSim” was developed in C++ to estimate the area, latency, energy and leakage power of various neuromorphic architectures. NeuroSim provides a wide variety of design options at the circuit/device level. NeuroSim can be used alone or as a supporting module to provide circuit-level performance estimation in neural network algorithms. A 2-layer multilayer perceptron (MLP) simulator with integration of NeuroSim was demonstrated to evaluate both the learning accuracy and circuit-level performance metrics for the online learning and offline classification, as well as to study the impact of eNVM reliability issues such as data retention and write endurance on the learning performance.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Social media analytics: a survey of techniques, tools and platforms

    Get PDF
    This paper is written for (social science) researchers seeking to analyze the wealth of social media now available. It presents a comprehensive review of software tools for social networking media, wikis, really simple syndication feeds, blogs, newsgroups, chat and news feeds. For completeness, it also includes introductions to social media scraping, storage, data cleaning and sentiment analysis. Although principally a review, the paper also provides a methodology and a critique of social media tools. Analyzing social media, in particular Twitter feeds for sentiment analysis, has become a major research and business activity due to the availability of web-based application programming interfaces (APIs) provided by Twitter, Facebook and News services. This has led to an ‘explosion’ of data services, software tools for scraping and analysis and social media analytics platforms. It is also a research area undergoing rapid change and evolution due to commercial pressures and the potential for using social media data for computational (social science) research. Using a simple taxonomy, this paper provides a review of leading software tools and how to use them to scrape, cleanse and analyze the spectrum of social media. In addition, it discussed the requirement of an experimental computational environment for social media research and presents as an illustration the system architecture of a social media (analytics) platform built by University College London. The principal contribution of this paper is to provide an overview (including code fragments) for scientists seeking to utilize social media scraping and analytics either in their research or business. The data retrieval techniques that are presented in this paper are valid at the time of writing this paper (June 2014), but they are subject to change since social media data scraping APIs are rapidly changing

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design

    Get PDF
    The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included

    Automatic Performance Optimization on Heterogeneous Computer Systems using Manycore Coprocessors

    Get PDF
    Emerging computer architectures and advanced computing technologies, such as Intel’s Many Integrated Core (MIC) Architecture and graphics processing units (GPU), provide a promising solution to employ parallelism for achieving high performance, scalability and low power consumption. As a result, accelerators have become a crucial part in developing supercomputers. Accelerators usually equip with different types of cores and memory. It will compel application developers to reach challenging performance goals. The added complexity has led to the development of task-based runtime systems, which allow complex computations to be expressed as task graphs, and rely on scheduling algorithms to perform load balancing between all resources of the platforms. Developing good scheduling algorithms, even on a single node, and analyzing them can thus have a very high impact on the performance of current HPC systems. Load balancing strategies, at different levels, will be critical to obtain an effective usage of the heterogeneous hardware and to reduce the impact of communication on energy and performance. Implementing efficient load balancing algorithms, able to manage heterogeneous hardware, can be a challenging task, especially when a parallel programming model for distributed memory architecture. In this paper, we presents several novel runtime approaches to determine the optimal data and task partition on heterogeneous platforms, targeting the Intel Xeon Phi accelerated heterogeneous systems

    An Adaptive and Robust Deep Learning Framework for THz Ultra-Massive MIMO Channel Estimation

    Full text link
    Terahertz ultra-massive MIMO (THz UM-MIMO) is envisioned as one of the key enablers of 6G wireless networks, for which channel estimation is highly challenging. Traditional analytical estimation methods are no longer effective, as the enlarged array aperture and the small wavelength result in a mixture of far-field and near-field paths, constituting a hybrid-field channel. Deep learning (DL)-based methods, despite the competitive performance, generally lack theoretical guarantees and scale poorly with the size of the array. In this paper, we propose a general DL framework for THz UM-MIMO channel estimation, which leverages existing iterative channel estimators and is with provable guarantees. Each iteration is implemented by a fixed point network (FPN), consisting of a closed-form linear estimator and a DL-based non-linear estimator. The proposed method perfectly matches the THz UM-MIMO channel estimation due to several unique advantages. First, the complexity is low and adaptive. It enjoys provable linear convergence with a low per-iteration cost and monotonically increasing accuracy, which enables an adaptive accuracy-complexity tradeoff. Second, it is robust to practical distribution shifts and can directly generalize to a variety of heavily out-of-distribution scenarios with almost no performance loss, which is suitable for the complicated THz channel conditions. For practical usage, the proposed framework is further extended to wideband THz UM-MIMO systems with beam squint effect. Theoretical analysis and extensive simulation results are provided to illustrate the advantages over the state-of-the-art methods in estimation accuracy, convergence rate, complexity, and robustness.Comment: 15 pages, 11 figures, 5 tables, accepted by IEEE Journal of Selected Topics in Signal Processing (JSTSP
    corecore