206 research outputs found

    Review of Automated Design and Optimization of MEMS

    Get PDF

    Moving Towards Analog Functional Safety

    Get PDF
    Over the past century, the exponential growth of the semiconductor industry has led to the creation of tiny and complex integrated circuits, e.g., sensors, actuators, and smart power systems. Innovative techniques are needed to ensure the correct functionality of analog devices that are ubiquitous in every smart system. The standard ISO 26262 related to functional safety in the automotive context specifies that fault injection is necessary to validate all electronic devices. For decades, standardizing fault modeling, injection and simulation mainly focused on digital circuits and disregarding analog ones. An initial attempt is being made with the IEEE P2427 standard draft standard that started to give this field a structured and formal organization. In this context, new fault models, injection, and abstraction methodologies for analog circuits are proposed in this thesis to enhance this application field. The faults proposed by the IEEE P2427 standard draft standard are initially evaluated to understand the associated fault behaviors during the simulation. Moreover, a novel approach is presented for modeling realistic stuck-on/off defects based on oxide defects. These new defects proposed are required because digital stuck-at-fault models where a transistor is frozen in on-state or offstate may not apply well on analog circuits because even a slight variation could create deviations of several magnitudes. Then, for validating the proposed defects models, a novel predictive fault grouping based on faulty AC matrices is applied to group faults with equivalent behaviors. The proposed fault grouping method is computationally cheap because it avoids performing DC or transient simulations with faults injected and limits itself to faulty AC simulations. Using AC simulations results in two different methods that allow grouping faults with the same frequency response are presented. The first method is an AC-based grouping method that exploits the potentialities of the S-parameters ports. While the second is a Circle-based grouping based on the circle-fitting method applied to the extracted AC matrices. Finally, an open-source framework is presented for the fault injection and manipulation perspective. This framework relies on the shared semantics for reading, writing, or manipulating transistor-level designs. The ultimate goal of the framework is: reading an input design written in a specific syntax and then allowing to write the same design in another syntax. As a use case for the proposed framework, a process of analog fault injection is discussed. This activity requires adding, removing, or replacing nodes, components, or even entire sub-circuits. The framework is entirely written in C++, and its APIs are also interfaced with Python. The entire framework is open-source and available on GitHub. The last part of the thesis presents abstraction methodologies that can abstract transistor level models into Verilog-AMS models and Verilog- AMS piecewise and nonlinear models into C++. These abstracted models can be integrated into heterogeneous systems. The purpose of integration is the simulation of heterogeneous components embedded in a Virtual Platforms (VP) needs to be fast and accurate

    A CO-SIMULATION ENVIRONMENT FOR MIXED SIGNAL, MULTI-DOMAIN SYSTEM LEVEL DESIGN EXPLORATION

    Get PDF
    This thesis presents a system-level co-simulation environment for mixed domain design exploration. By employing shared memory IPC (Inter-Process Communication) and utilizing PDES (Parallel Discrete Event Simulation) techniques, we examine two methods of synchronization, lock-step and dynamic. We then compare the performance of these two methods on a series of test systems as well as real designs using the Chatoyant MOEMS (Micro-Electro Mechanical Systems) simulator and the mixed HDL (Hardware Description Language) simulator from Model Technology, ModelSim. The results collected are used to ascertain which method provides the best overall performance with the least overhead

    A Holistic Approach to Functional Safety for Networked Cyber-Physical Systems

    Get PDF
    Functional safety is a significant concern in today's networked cyber-physical systems such as connected machines, autonomous vehicles, and intelligent environments. Simulation is a well-known methodology for the assessment of functional safety. Simulation models of networked cyber-physical systems are very heterogeneous relying on digital hardware, analog hardware, and network domains. Current functional safety assessment is mainly focused on digital hardware failures while minor attention is devoted to analog hardware and not at all to the interconnecting network. In this work we believe that in networked cyber-physical systems, the dependability must be verified not only for the nodes in isolation but also by taking into account their interaction through the communication channel. For this reason, this work proposes a holistic methodology for simulation-based safety assessment in which safety mechanisms are tested in a simulation environment reproducing the high-level behavior of digital hardware, analog hardware, and network communication. The methodology relies on three main automatic processes: 1) abstraction of analog models to transform them into system-level descriptions, 2) synthesis of network infrastructures to combine multiple cyber-physical systems, and 3) multi-domain fault injection in digital, analog, and network. Ultimately, the flow produces a homogeneous optimized description written in C++ for fast and reliable simulation which can have many applications. The focus of this thesis is performing extensive fault simulation and evaluating different functional safety metrics, \eg, fault and diagnostic coverage of all the safety mechanisms

    High-Speed Performance, Power and Thermal Co-simulation For SoC Design

    Get PDF
    This dissertation presents a multi-faceted effort at developing standard System Design Language based tools that allow designers to the model power and thermal behavior of SoCs, including heterogeneous SoCs that include non-digital components. The research contributions made in this dissertation include: • SystemC-based power/performance co-simulation for the Intel XScale microprocessor. We performed detailed characterization of the power dissipation patterns of a variety of system components and used these results to build detailed power models, including a highly accurate, validated instruction-level power model of the XScale processor. We also proposed a scalable, efficient and validated methodology for incorporating fast, accurate power modeling capabilities into system description languages such as SystemC. This was validated against physical measurements of hardware power dissipation. • Modeling the behavior of non-digital SoC components within standard System Design Languages. We presented an approach for modeling the functionality, performance, power, and thermal behavior of a complex class of non-digital components — MEMS microhotplate-based gas sensors — within a SystemC design framework. The components modeled include both digital components (such as microprocessors, busses and memory) and MEMS devices comprising a gas sensor SoC. The first SystemC models of a MEMS-based SoC and the first SystemC models of MEMS thermal behavior were described. Techniques for significantly improving simulation speed were proposed, and their impact quantified. • Vertically Integrated Execution-Driven Power, Performance and Thermal Co-Simulation For SoCs. We adapted the above techniques and used numerical methods to model the system of differential equations that governs on-chip thermal diffusion. This allows a single high-speed simulation to span performance, power and thermal modeling of a design. It also allows feedback behaviors, such as the impact of temperature on power dissipation or performance, to be modeled seamlessly. We validated the thermal equation-solving engine on test layouts against detailed low-level tools, and illustrated the power of such a strategy by demonstrating a series of studies that designers can perform using such tools. We also assessed how simulation and accuracy are impacted by spatial and temporal resolution used for thermal modeling

    An FPGA-based 77 GHzs RADAR signal processing system for automotive collision avoidance

    Get PDF
    An FPGA implementable Verilog HDL based signal processing algorithm has been developed to detect the range and velocity of target vehicles using a MEMS based 77 GHz LFMCW long range automotive radar. The algorithm generates a tuning voltage to control a GaAs based VCO to produce a triangular chirp signal, controls the operation of MEMS components, and finally processes the IF signal to determine the range and veolicty of the detected targets. The Verilog HDL code has been developed targeting the Xilinx Virtex-5 SX50T FPGA. The developed algorithm enables the MEMS radar to detect 24 targets in an optimum timespan of 6.42 ms in the range of 0.4 to 200 m with a range resolution of 0.19 m and a maximum range error 0.25 m. A maximum relative velocity of ±300 km/h can be determined with a velocity resolution in HDL of 0.95 m/s and a maximum velocity error of 0.83 m/s with a sweep duration of 1 ms

    RECENT RESEARCH IN VLSI, MEMS AND POWER DEVICES WITH PRACTICAL APPLICATION TO THE ITER AND DREAM PROJECTS

    Get PDF
    Several MEMS (Micro Electro-Mechanical Systems) devices have been analysed and simulated. The new proposed model of SiC MPS (Merged PIN-Schottky) diodes is in full agreement with the real MPS devices. The real size DLL (Dynamic Lattice Liquid) simulator as well as the research on modelling and simulation of modern VLSI devices with practical applications have been presented. In the basis of experience in the field of ATCA (Advanced Telecommunications Computing Architecture) based systems a proof-of-concept DAQ (data acquisition) system for ITER (International Thermonuclear Experimental Reactor) have been proposed

    Fault-based Analysis of Industrial Cyber-Physical Systems

    Get PDF
    The fourth industrial revolution called Industry 4.0 tries to bridge the gap between traditional Electronic Design Automation (EDA) technologies and the necessity of innovating in many indus- trial fields, e.g., automotive, avionic, and manufacturing. This complex digitalization process in- volves every industrial facility and comprises the transformation of methodologies, techniques, and tools to improve the efficiency of every industrial process. The enhancement of functional safety in Industry 4.0 applications needs to exploit the studies related to model-based and data-driven anal- yses of the deployed Industrial Cyber-Physical System (ICPS). Modeling an ICPS is possible at different abstraction levels, relying on the physical details included in the model and necessary to describe specific system behaviors. However, it is extremely complicated because an ICPS is com- posed of heterogeneous components related to different physical domains, e.g., digital, electrical, and mechanical. In addition, it is also necessary to consider not only nominal behaviors but even faulty behaviors to perform more specific analyses, e.g., predictive maintenance of specific assets. Nevertheless, these faulty data are usually not present or not available directly from the industrial machinery. To overcome these limitations, constructing a virtual model of an ICPS extended with different classes of faults enables the characterization of faulty behaviors of the system influenced by different faults. In literature, these topics are addressed with non-uniformly approaches and with the absence of standardized and automatic methodologies for describing and simulating faults in the different domains composing an ICPS. This thesis attempts to overcome these state-of-the-art gaps by proposing novel methodologies, techniques, and tools to: model and simulate analog and multi-domain systems; abstract low-level models to higher-level behavioral models; and monitor industrial systems based on the Industrial Internet of Things (IIOT) paradigm. Specifically, the proposed contributions involve the exten- sion of state-of-the-art fault injection practices to improve the ICPSs safety, the development of frameworks for safety operations automatization, and the definition of a monitoring framework for ICPSs. Overall, fault injection in analog and digital models is the state of the practice to en- sure functional safety, as mentioned in the ISO 26262 standard specific for the automotive field. Starting from state-of-the-art defects defined for analog descriptions, new defects are proposed to enhance the IEEE P2427 draft standard for analog defect modeling and coverage. Moreover, dif- ferent techniques to abstract a transistor-level model to a behavioral model are proposed to speed up the simulation of faulty circuits. Therefore, unlike the electrical domain, there is no extensive use of fault injection techniques in the mechanical one. Thus, extending the fault injection to the mechanical and thermal fields allows for supporting the definition and evaluation of more reliable safety mechanisms. Hence, a taxonomy of mechanical faults is derived from the electrical domain by exploiting the physical analogies. Furthermore, specific tools are built for automatically instru- menting different descriptions with multi-domain faults. The entire work is proposed as a basis for supporting the creation of increasingly resilient and secure ICPS that need to preserve functional safety in any operating context

    A Low-Power DSP Architecture for a Fully Implantable Cochlear Implant System-on-a-Chip.

    Full text link
    The National Science Foundation Wireless Integrated Microsystems (WIMS) Engineering Research Center at the University of Michigan developed Systems-on-a-Chip to achieve biomedical implant and environmental monitoring functionality in low-milliwatt power consumption and 1-2 cm3 volume. The focus of this work is implantable electronics for cochlear implants (CIs), surgically implanted devices that utilize existing nerve connections between the brain and inner-ear in cases where degradation of the sensory hair cells in the cochlea has occurred. In the absence of functioning hair cells, a CI processes sound information and stimulates the nderlying nerve cells with currents from implanted electrodes, enabling the patient to understand speech. As the brain of the WIMS CI, the WIMS microcontroller unit (MCU) delivers the communication, signal processing, and storage capabilities required to satisfy the aggressive goals set forth. The 16-bit MCU implements a custom instruction set architecture focusing on power-efficient execution by providing separate data and address register windows, multi-word arithmetic, eight addressing modes, and interrupt and subroutine support. Along with 32KB of on-chip SRAM, a low-power 512-byte scratchpad memory is utilized by the WIMS custom compiler to obtain an average of 18% energy savings across benchmarks. A synthesizable dynamic frequency scaling circuit allows the chip to select a precision on-chip LC or ring oscillator, and perform clock scaling to minimize power dissipation; it provides glitch-free, software-controlled frequency shifting in 100ns, and dissipates only 480μW. A highly flexible and expandable 16-channel Continuous Interleaved Sampling Digital Signal Processor (DSP) is included as an MCU peripheral component. Modes are included to process data, stimulate through electrodes, and allow experimental stimulation or processing. The entire WIMS MCU occupies 9.18mm2 and consumes only 1.79mW from 1.2V in DSP mode. This is the lowest reported consumption for a cochlear DSP. Design methodologies were analyzed and a new top-down design flow is presented that encourages hardware and software co-design as well as cross-domain verification early in the design process. An O(n) technique for energy-per-instruction estimations both pre- and post-silicon is presented that achieves less than 4% error across benchmarks. This dissertation advances low-power system design while providing an improvement in hearing recovery devices.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91488/1/emarsman_1.pd
    corecore