131 research outputs found

    A mixed inventory structure for German concatenative synthesis

    Get PDF
    In speech synthesis by unit concatenation a major point is the definition of the unit inventory. Diphone or demisyllable inventories are widely used but both unit types have their drawbacks. This paper describes a mixed inventory structure which is syllable oriented but does not demand a definite decision about the position of a syllable boundary. In the definition process of the inventory the results of a comprehensive investigation of coarticulatory phenomena at syllable boundaries were used as well as a machine readable pronunciation dictionary. An evaluation comparing the mixed inventory with a demisyllable and a diphone inventory confirms that speech generated with the mixed inventory is superior regarding general acceptance. A segmental intelligibility test shows the high intelligibility of the synthetic speech

    A bilingual Spanish-Catalan database of units for concatenative synthesis

    Get PDF
    Different databases of phonetic units are required in multilingual Text-to-Speech systems based on concatenative synthesis. We are currently developing a TTS system able to convert text either in Catalan and Spanish, with some of the modules being used indistinctly by the two languages while others are specific to each language. In order to reduce the total amount of units, a bilingual database has been obtained from two monolingual databases recorded by the same speaker, which contains all possible units for both languages. Common units have been selected according to their phonetic representation. The bilingual database has 1099 units, including diphones and some long units, while the two monolingual databases would result in 1545 units. An analysis of Catalan unit frequencies has been done to select what units should be included in the database. The experiments carried out showed that that synthetic speech has a strong Catalan accent, probably due to the speaker's accent. Some common units, even if they are represented with the same symbol, should be considered separately in a bilingual database in order to cope with acoustically different allophones.Peer ReviewedPostprint (published version

    Fast Speech in Unit Selection Speech Synthesis

    Get PDF
    Moers-Prinz D. Fast Speech in Unit Selection Speech Synthesis. Bielefeld: Universität Bielefeld; 2020.Speech synthesis is part of the everyday life of many people with severe visual disabilities. For those who are reliant on assistive speech technology the possibility to choose a fast speaking rate is reported to be essential. But also expressive speech synthesis and other spoken language interfaces may require an integration of fast speech. Architectures like formant or diphone synthesis are able to produce synthetic speech at fast speech rates, but the generated speech does not sound very natural. Unit selection synthesis systems, however, are capable of delivering more natural output. Nevertheless, fast speech has not been adequately implemented into such systems to date. Thus, the goal of the work presented here was to determine an optimal strategy for modeling fast speech in unit selection speech synthesis to provide potential users with a more natural sounding alternative for fast speech output

    Segmental and prosodic improvements to speech generation

    Get PDF

    Preprocessing models for speech technologies : the impact of the normalizer and the grapheme-to-phoneme on hybrid systems

    Get PDF
    Um dos usos mais promissores e de crescimento mais rápido da tecnologia de linguagem natural corresponde às Tecnologias de Processamento da Fala. Esses sistemas usam tecnologia de reconhecimento automático de fala e conversão de texto em fala para fornecer uma interface de voz para aplicações de conversão. Com efeito, esta tecnologia está presente em diversas situações do nosso quotidiano, tais como assistentes virtuais em smartphones (como a SIRI ou Alexa), ou sistemas de interação por voz em automóveis. As tecnologias de fala evoluíram progressivamente até ao ponto em que os sistemas podem prestar pouca atenção à sua estrutura linguística. Com efeito, o Conhecimento Linguístico pode ser extremamente importante numa arquitetura de fala, particularmente numa fase de pré-processamento de dados: combinar conhecimento linguístico em modelo de tecnologia de fala permite produzir sistemas mais confiáveis e robustos. Neste sentido, o pré-processamento de dados é uma etapa fundamental na construção de um modelo de Inteligência Artificial (IA). Se os dados forem razoavelmente pré-processados, os resultados serão consistentes e de alta qualidade (García et al., 2016). Por exemplo, os sistemas mais modernos de reconhecimento de fala permitem modelizar entidades linguísticas em vários níveis, frases, palavras, fones e outras unidades, usando várias abordagens estatísticas (Jurafsky & Martin, 2022). Apesar de treinados sobre dados, estes sistemas são tão mais precisos quanto mais eficazes e eficientes a capturarem o conhecimento linguístico. Perante este cenário, este trabalho descreve os métodos de pré-processamento linguístico em sistemas híbridos (de inteligência artificial combinada com conhecimento linguístico) fornecidos por uma empresa internacional de Inteligência Artificial (IA), a Defined.ai. A start-up concentra-se em fornecer dados, modelos e ferramentas de alta qualidade para IA., a partir da sua plataforma de crowdsourcing Neevo. O utilizador da plataforma tem acesso a pequenas tarefas de anotação de dados, tais como: transcrição, gravação e anotação de áudios, validação de pronúncia, tradução de frases, classificação de sentimentos num texto, ou até extração de informação a partir de imagens e vídeos. Até ao momento, a empresa conta com mais de 500,000 utilizadores de 70 países e 50 línguas diferentes. Através duma recolha descentralizada dos dados, a Defined.ai responde à necessidade crescente de dados de treino que sejam justos, i.e., que não reflitam e/ou amplifiquem os padrões de discriminação vigentes na nossa sociedade (e.g., de género, raça, orientação sexual). Como resultado, a Defined.ai pode ser vista como uma comunidade de especialistas em IA, que produz sistemas justos, éticos e de futuro. Assim, o principal objetivo deste trabalho é aprimorar e avançar a qualidade dos modelos de pré-processamento, aplicando-lhes conhecimento linguístico. Assim, focamo-nos em dois modelos linguísticos introdutórios numa arquitetura de fala: Normalizador e Grafema-Fonema. Para abordar o assunto principal deste estudo, vamos delinear duas iniciativas realizadas em colaboração com a equipa de Machine learning da Defined.ai. O primeiro projeto centra-se na expansão e melhoria de um modelo Normalizador pt-PT. O segundo projeto abrange a criação de modelos Grafema-Fonema (do inglês Grapheme-to-phoneme, G2P) para duas línguas diferentes – Sueco e Russo. Os resultados mostram que ter uma abordagem baseada em regras para o Normalizador e G2P aumenta a sua precisão e desempenho, representado uma vantagem significativa na melhoria das ferramentas da Defined.ai e nas arquiteturas de fala. Além disso, com os resultados obtidos no primeiro projeto, melhoramos o normalizador na sua facilidade de uso, aumentando cada regra com o respetivo conhecimento linguístico. Desta forma, a nossa pesquisa demonstra o valor e a importância do conhecimento linguístico em modelos de pré-processamento. O primeiro projeto teve como objetivo fornecer cobertura para diversas regras linguísticas: Números Reais, Símbolos, Abreviaturas, Ordinais, Medidas, Moeda, Datas e Hora. A tarefa consistia em expandir as regras com suas respetivas expressões normalizadas a partir de regras a seguir que teriam uma leitura não marcada inequívoca própria. O objetivo principal é melhorar o normalizador tornando-o mais simples, consistente entre diferentes linguagens e de forma a cobrir entradas não ambíguas. Para preparar um modelo G2P para dois idiomas diferentes - Sueco e Russo - quatro tarefas foram realizadas: 1. Preparar uma análise linguística de cada língua, 2. Desenvolver um inventário fonético-fonológico inicial, 3. Mapear e converter automaticamente o léxico fonético para DC-Arpabet (o alfabeto fonético que a Defined.ai construiu), 4. Rever e corrigir o léxico fonético, e 4. Avaliar o modelo Grafema-Fonema. A revisão dos léxicos fonéticos foi realizada, em consulta com a nossa equipa da Defined.ai, por linguistas nativos que verificaram se os inventários fonéticos-fonológicos seriam adequados para transcrever. Segundo os resultados de cada modelo, nós avaliamos de acordo com 5 métricas padrão na literatura: Word Error Rate (WER), Precision, Recall, F1-score e Accuracy. Adaptamos a métrica WER para Word Error Rate over normalizable tokens (WERnorm) por forma a responder às necessidades dos nossos modelos. A métrica WER (ou taxa de erro por palavra) foi adaptada de forma a contabilizar tokens normalizáveis, em vez de todos os tokens. Deste modo, a avaliação do normalizador, avalia-se usando um conjunto de aproximadamente 1000 frases de referência, normalizadas manualmente e marcadas com a regra de normalização que deveria ser aplicada (por exemplo, números reais, símbolos, entre outros). De acordo com os resultados, na versão 2 do normalizador, obtivemos discrepâncias estatisticamente significativas entre as regras. A regra dos ordinais apresenta a maior percentagem (94%) e as abreviaturas (43%) o menor percentual. Concluímos também um aumento significativo no desempenho de algumas das regras. Por exemplo, as abreviaturas mostram um desempenho de 23 pontos percentuais (pp.) superior. Quando comparamos as duas versões, concluímos que a versão 2 do normalizador apresenta, em média, uma taxa de erro 4 pp. menor sobre os tokens normalizáveis em comparação com a versão 1. Assim, o uso da regra dos ordinais (94% F1-score) e da regra dos números reais (89% F1-score) é a maior fonte de melhoria no normalizador. Além disso, em relação à precisão, a versão 2 apresenta uma melhoria de, em média, 28 pp em relação à versão 1. No geral, os resultados revelam inequivocamente uma melhoria da performance do normalizador em todas as regras aplicadas. De acordo com os resultados do segundo projeto, o léxico fonético sueco alcançou um WER de 10%, enquanto o léxico fonético russo um WER ligeiramente inferior (11%). Os inventários fonético-fonológicos suecos apresentam uma precisão maior (97%) do que os inventários fonético-fonológicos russos (96%). No geral, o modelo sueco G2P apresenta um melhor desempenho (98%), embora a sua diferença ser menor quando comparado ao modelo russo (96%). Em conclusão, os resultados obtidos tiveram um impacto significativo na pipeline de fala da empresa e nas arquiteturas de fala escrita (15% é a arquitetura de fala). Além disso, a versão 2 do normalizador começou a ser usada noutros projetos do Defined.ai, principalmente em coleções de prompts de fala. Observamos que nossa expansão e melhoria na ferramenta abrangeu expressões que compõem uma proporção considerável de expressões normalizáveis, não limitando a utilidade da ferramenta, mas aumentando a diversidade que ela pode oferecer ao entregar prompts, por exemplo. Com base no trabalho desenvolvido, podemos observar que, ao ter uma abordagem baseada em regras para o Normalizador e o G2P, conseguimos aumentar a sua precisão e desempenho, representando não só uma vantagem significativa na melhoria das ferramentas da Defined.ai, como também nas arquiteturas de fala. Além disso, a nossa abordagem também foi aplicada a outras línguas obtendo resultados muito positivos e mostrando a importância da metodologia aplicada nesta tese. Desta forma, o nosso trabalho mostra a relevância e o valor acrescentado de aplicar conhecimento linguístico a modelos de pré-processamento.One of the most fast-growing and highly promising uses of natural language technology is in Speech Technologies. Such systems use automatic speech recognition (ASR) and text-to-speech (TTS) technology to provide a voice interface for conversational applications. Speech technologies have progressively evolved to the point where they pay little attention to their linguistic structure. Indeed, linguistic knowledge can be extremely important in a speech pipeline, particularly in the Data Preprocessing phase: combining linguistic knowledge in a speech technology model allows producing more reliable and robust systems. Given this background, this work describes the linguistic preprocessing methods in hybrid systems provided by an Artificial Intelligence (AI) international company, Defined.ai. The startup focuses on providing high-quality data, models, and AI tools. The main goal of this work is to enhance and advance the quality of preprocessing models by applying linguistic knowledge. Thus, we focus on two introductory linguistic models in a speech pipeline: Normalizer and Grapheme-to-Phoneme (G2P). To do so, two initiatives were conducted in collaboration with the Defined.ai Machine Learning team. The first project focuses on expanding and improving a pt-PT Normalizer model. The second project covers creating G2P models for two different languages – Swedish and Russian. Results show that having a rule-based approach to the Normalizer and G2P increases its accuracy and performance, representing a significant advantage in improving Defined.ai tools and speech pipelines. Also, with the results obtained on the first project, we improved the normalizer in ease of use by increasing each rule with linguistic knowledge. Accordingly, our research demonstrates the added value of linguistic knowledge in preprocessing models

    Singing voice resynthesis using concatenative-based techniques

    Get PDF
    Tese de Doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    Final report for Verbmobil Teilprojekt 4.4 : English synthesis

    Get PDF
    corecore