2,747 research outputs found

    Optimal operation of combined heat and power systems: an optimization-based control strategy

    Get PDF
    The use of decentralized Combined Heat and Power (CHP) plants is increasing since the high levels of efficiency they can achieve. Thus, to determine the optimal operation of these systems in dynamic energy-market scenarios, operational constraints and the time-varying price profiles for both electricity and the required resources should be taken into account. In order to maximize the profit during the operation of the CHP plant, this paper proposes an optimization-based controller designed according to the Economic Model Predictive Control (EMPC) approach, which uses a non-constant time step along the prediction horizon to get a shorter step size at the beginning of that horizon while a lower resolution for the far instants. Besides, a softening of related constraints to meet the market requirements related to the sale of electric power to the grid point is proposed. Simulation results show that the computational burden to solve optimization problems in real time is reduced while minimizing operational costs and satisfying the market constraints. The proposed controller is developed based on a real CHP plant installed at the ETA research factory in Darmstadt, Germany.Peer ReviewedPostprint (author's final draft

    The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management

    Get PDF
    Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation

    Petroleum refinery scheduling with consideration for uncertainty

    Get PDF
    Scheduling refinery operation promises a big cut in logistics cost, maximizes efficiency, organizes allocation of material and resources, and ensures that production meets targets set by planning team. Obtaining accurate and reliable schedules for execution in refinery plants under different scenarios has been a serious challenge. This research was undertaken with the aim to develop robust methodologies and solution procedures to address refinery scheduling problems with uncertainties in process parameters. The research goal was achieved by first developing a methodology for short-term crude oil unloading and transfer, as an extension to a scheduling model reported by Lee et al. (1996). The extended model considers real life technical issues not captured in the original model and has shown to be more reliable through case studies. Uncertainties due to disruptive events and low inventory at the end of scheduling horizon were addressed. With the extended model, crude oil scheduling problem was formulated under receding horizon control framework to address demand uncertainty. This work proposed a strategy called fixed end horizon whose efficiency in terms of performance was investigated and found out to be better in comparison with an existing approach. In the main refinery production area, a novel scheduling model was developed. A large scale refinery problem was used as a case study to test the model with scheduling horizon discretized into a number of time periods of variable length. An equivalent formulation with equal interval lengths was also presented and compared with the variable length formulation. The results obtained clearly show the advantage of using variable timing. A methodology under self-optimizing control (SOC) framework was then developed to address uncertainty in problems involving mixed integer formulation. Through case study and scenarios, the approach has proven to be efficient in dealing with uncertainty in crude oil composition

    A Flexible Inventory Model for Municipal Solid Waste Recycling

    Get PDF
    Most of the United States have laws mandating the recycling of municipal solid waste (MSW). In order to comply, municipalities recycle quotas of materials, without regard to fluctuating prices. An inventory system is proposed that allows municipalities to be sensitive to materials prices as they recycle in accordance with state mandates. A dynamic model is developed; it uses historical secondary material prices as exogenous inputs to minimize the net present value of MSW recycling system cost. The model provides a cost-effective method for municipalities to achieve their MSW recycling targets. The savings is approximately 1.43pertonofMSWgeneratedbasedontotalMSWmanagementcostsof1.43 per ton of MSW generated based on total MSW management costs of 13.5 per ton. The model also allows one to investigate the effectiveness of various strategies for increasing the recycling rate. These strategies include: reducing the transportation cost for recyclables, supporting the market price of selected secondary materials, and landfill bans on selected materials. This model may also be used to investigate the effect of market price changes on the portfolio of materials held in inventory for recycling.Municipal Solid Waste, Recycling, Inventory, Optimization

    Integrating the Cost of Quality into Multi-Products Multi-Components Supply Chain Network Design

    Get PDF
    More than ever before the success of a company heavily depends on its supply chain and how efficient the network. A supply chain needs to be configured in such a manner as to minimize cost while still maintaining a good quality level to satisfy the end user and to be efficient, designing for the network and the whole chain is important. Including the cost of quality into the process of designing the network can be rewording and revealing. In this research the concept of cost of quality as a performance measure was integrated into the supply chain network designing process for a supply chain concerned with multi products multi components. This research discusses how this supply chain can be mathematically modeled, solutions for the resulted model and finally studied the effect of the inclusion of the quality as a parameter on the result of the deigning process. Nonlinear mixed integer mathematical model was developed for the problem and for solving the model two solutions based on Genetic algorithm and Tabu Search were developed and compared. The results and analysis show that the solution based on the Genetic algorithm outperforms the Tabu Search based solution especially in large size problems. In addition, the analysis showed that the inclusion of the cost of quality into the model effect the designing process and changes the resultant routes

    A Multicriteria Analysis for the Green VRP: A Case Discussion for the Distribution Problem of a Spanish Retailer

    Get PDF
    [EN] This research presents the group of green vehicle routing problems with environmental costs translated into money versus production of noise, pollution and fuel consumption. This research is focused on multi-objective green logistics optimization. Optimality criteria are environmental costs: minimization of amount of money paid as externality cost for noise, pollution and costs of fuel versus minimization of noise, pollution and fuel consumption themselves. Some mixed integer programming formulations of multi-criteria vehicle routing problems have been considered. Mathematical models were formulated under assumption of existence of asymmetric distance-based costs and use of homogeneous fleet. The exact solution methods are applied for finding optimal solutions. The software used to solve these models is the CPLEX solver with AMPL programming language. The researchers were able to use real data from a Spanish company of groceries. Problems deal with green logistics for routes crossing the Spanish regions of Navarre, Basque Country and La Rioja. Analyses of obtained results could help logistics managers to lead the initiative in area of green logistics by saving money paid for environmental costs as well as direct cost of fuel and minimization of pollution and noise.This work has been partially supported by the National Research Center (NCN), Poland (DEC-2013/11/B/ST8/04458), by AGH, and by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P and TRA2015-71883-REDT), and the Ibero-American Program for Science and Technology for Development (CYTED2014-515RT0489). Likewise, we want to acknowledge the support received by the CAN Foundation in Navarre, Spain (Grants CAN2014-3758 and CAN2015-70473)Sawik, B.; Faulin, J.; PĂ©rez Bernabeu, E. (2017). A Multicriteria Analysis for the Green VRP: A Case Discussion for the Distribution Problem of a Spanish Retailer. Transportation Research Procedia. 22:305-313. https://doi.org/10.1016/j.trpro.2017.03.037S3053132

    Managing risks of market price uncertainty for a microgrid operation

    Get PDF
    After deregulation of electricity in the United States, the day-ahead and real-time markets allow load serving entities and generation companies to bid and purchase/sell energy under the supervision of the independent system operator (ISO). The electricity market prices are inherently uncertain, and can be highly volatile. The main objective of this thesis is to hedge against the risk from the uncertainty of the market prices when purchasing/selling energy from/to the market. The energy manager can also schedule distributed generators (DGs) and storage of the microgrid to meet the demand, in addition to energy transactions from the market. The risk measure used in this work is the variance of the uncertain market purchase/sale cost/revenue, assuming the price following a Gaussian distribution. Using Markowitz optimization, the risk is minimized to find the optimal mix of purchase from the markets. The problem is formulated as a mixed integer quadratic program. The microgrid at Illinois Institute of Technology (IIT) in Chicago, IL was used as a case study. The result of this work reveals the tradeoff faced by the microgrid energy manager between minimizing the risk and minimizing the mean of the total operating cost (TOC) of the microgrid. With this information, the microgrid energy manager can make decisions in the day-ahead and real-time markets according to their risk aversion preference. The assumption of market prices following Gaussian distribution is also verified to be reasonable for the purpose of hedging against their risks. This is done by comparing the result of the proposed formulation with that obtained from the sample market prices randomly generated using the distribution of actual historic market price data --Abstract, page iii

    Optimizing The Transportation of Petroleum Products in A Possible Multi-Level Supply Chain

    Get PDF
    The goal of many supply chain optimization problems is to minimize the costs of the entire supply chain network. However, since environmental protection is one of the main concerns, the green supply chain network has been seriously considered as a solution to this concern in order to minimize its effects on nature. This article refers to the modeling and solution of a green supply chain network for the transportation of petroleum products in order to reduce the annual costs, considering the environmental effects. In this article, the cost elements of the supply chain such as the transportation costs of each petroleum product, operating costs, the cost of purchasing crude oil products and the fixed costs of building oil centers as well as the components of the environmental effects of the supply chain such as the amount of gas emissions and volatile organic particles produced by transportation options in the supply chain. considered green. Considering these two components (cost and environmental impact), we have proposed a multi-objective supply chain model. In this facility model, oil centers have limited capacity and at each level of the chain, there are several types of transportation options with different costs. To solve the problem, we have used two multi-objective particle swarm optimization algorithms and genetic multi-objective optimization algorithm with non-dominant sorting II with a priority-based decoding to encode the chromosome. Finally, we have used TOPSIS method to compare these two algorithms

    Essays on risk management in portfolio optimization and gas supply networks

    Get PDF
    This work focuses on developing algorithms and methodologies to solve problems dealing with uncertainty in portfolio optimization and industrial gas networks. First, we study the Mean-SemiVariance Project (MSVP) portfolio selection problem, where the objective is to obtain the optimal risk-reward portfolio of non-divisible projects when the risk is measured by the semivariance of the portfolio\u27s Net-Present Value (NPV) and the reward is measured by the portfolio\u27s expected NPV. Similar to the well-known Mean-Variance portfolio selection problem, when integer variables are present (e.g., due to transaction costs, cardinality constraints, or asset illiquidity), the MSVP problem can be solved using Mixed-Integer Quadratic Programming (MIQP) techniques. However, conventional MIQP solvers may be unable to solve large-scale MSVP problem instances in a reasonable amount of time. In this paper, we propose two linear solution schemes to solve the MSVP problem; that is, the proposed schemes avoid the use of MIQP solvers and only require the use of Mixed-Integer Linear Programming (MILP) techniques. In particular, we show that the solution of a class of real-world MSVP problems, in which project returns are positively correlated, can be accurately approximated by solving a single MILP problem. In general, we show that the MSVP problem can be effectively solved by a sequence of MILP problems, which allow us to solve large-scale MSVP problem instances faster than using MIQP solvers. We illustrate our solution schemes by solving a real MSVP problem arising in a Latin American oil and gas company. Also, we solve instances of the MSVP problem that are constructed using data from thePSPLIB library of project scheduling problems. Both approaches are empirically shown to be effective and outperforming the default benchmark MIQP solver to find near-optimal solutions for the selected instances of the MSVP problem.Second, we present an algorithm to compute near-optimal Value-at-Risk (VaR) portfolios. It is known to be difficult to compute optimal VaR portfolios; that is, an optimal risk-reward portfolio allocation using VaR as the risk measure. This is due to VaR being non-convex and of combinatorial nature. In particular, it is well-known that the VaR portfolio problem can be formulated as a mixed-integer linear program (MILP) that is difficult to solve with current MILP solvers for medium to large-scale instances of the problem. The proposed algorithm addresses the shortcomings of the MILP formulation in terms of solution time. To illustrate the efficiency of the presented algorithm, numerical results are presented using historical asset returns from the US financial market. Empirical results suggest that the developed algorithm obtaining a lower bound for VaR outperforms the recently proposed algorithms from the literature. Additionally, we also show that the developed algorithms are able to obtain and guarantee near-optimal solutions for large scale instances of VaR portfolio optimization problem more efficiently than the off the shelf commercial solvers within 1% accuracy.Third, we analyze the impact of the sensor reading errors on parameters that affect the production costs of a leading US industrial gas supply company. For this purpose, a systematic methodology is applied first to determine the relationship between the system output and input parameters, and second to identify the assigned input sensors whose readings need to be improved in a prioritized manner based on the strength of those input-output relationships. The two main criteria used to prioritize these sensors are the decrease in production costs and the decrease in production costs’ volatility obtained when the selected sensor’s precision is improved. To illustrate the effectiveness of the proposed approach, we first apply it to a simplified version of the real supply network model where the results can be readily validated with the simulated data. Then, we apply and test the proposed approach in the real supply network model with historical data. The experiments suggest that we are able to obtain a significant decrease in production costs and in production costs’ volatility by prioritizing the sensors\u27 maintenance subject to a limited budget.Finally, we analyze the performance of portfolio allocation strategies using clustering techniques based on financial asset\u27s correlation matrices. The Markowitz\u27s mean-variance framework uses first and second order sample moment estimators which are highly subject to estimation errors. The estimation error on the moments could be very significant and it may offset the benefits obtained from the diversification of the portfolio. There are a number of methodologies proposed in the literature to reduce the effect of the estimation error on the moment estimators. A group of these are based on the clustering approaches using sample correlation coefficients as the similarity measure. The idea is to obtain a hierarchical structure between the financial assets and then to use this information to filter the underlying true representative economic information between the assets and to reflect it in a modified correlation matrix. The objective of this study is to replicate and verify some of the published work comparing different allocation strategies and also incorporating recently published hierarchical clustering based portfolio selection strategies into out of sample performance evaluation across different datasets. Initial findings suggest that the difference between the performance of the classical strategies and the recently developed clustering based methodologies are not statistically significant from each other when only positive weights are allowed in the portfolios
    • …
    corecore