95,587 research outputs found

    The Coherent Crooks Equality

    Full text link
    This chapter reviews an information theoretic approach to deriving quantum fluctuation theorems. When a thermal system is driven from equilibrium, random quantities of work are required or produced: the Crooks equality is a classical fluctuation theorem that quantifies the probabilities of these work fluctuations. The framework summarised here generalises the Crooks equality to the quantum regime by modeling not only the driven system but also the control system and energy supply that enables the system to be driven. As is reasonably common within the information theoretic approach but high unusual for fluctuation theorems, this framework explicitly accounts for the energy conservation using only time independent Hamiltonians. We focus on explicating a key result derived by Johan {\AA}berg: a Crooks-like equality for when the energy supply is allowed to exist in a superposition of energy eigenstates states.Comment: 11 pages, 3 figures; Chapter for the book "Thermodynamics in the Quantum Regime - Recent Progress and Outlook", eds. F. Binder, L. A. Correa, C. Gogolin, J. Anders and G. Adess

    Electroweak Splitting Functions and High Energy Showering

    Full text link
    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2)xU(1) and discuss their general features in the collinear and soft-collinear regimes. We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in the VEV. We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons (gamma/Z/h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O(1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O(30%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O(1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson (W') and the subsequent showering of its decay products.Comment: 67 pages, 12 figures; v2, published in JHEP, some expanded discussions and other minor revision

    Consciousness, cognition, and the hierarchy of context: extending the global neuronal workspace model

    Get PDF
    We adapt an information theory analysis of interacting cognitive biological and social modules to the problem of the global neuronal workspace, the new standard neuroscience paradigm for consciousness. Tunable punctuation emerges in a natural way, suggesting the possibility of fitting appropriate phase transition power law, and away from transition, generalized Onsager relation expressions, to observational data on conscious reaction. The development can be extended in a straightforward manner to include psychosocial stress, culture, or other cognitive modules which constitute a structured, embedding hierarchy of contextual constraints acting at a slower rate than neuronal function itself. This produces a 'biopsychosociocultural' model of individual consciousness that, while otherwise quite close to the standard treatment, meets compelling philosophical and other objections to brain-only descriptions

    Transfer Learning for OCRopus Model Training on Early Printed Books

    Full text link
    A method is presented that significantly reduces the character error rates for OCR text obtained from OCRopus models trained on early printed books when only small amounts of diplomatic transcriptions are available. This is achieved by building from already existing models during training instead of starting from scratch. To overcome the discrepancies between the set of characters of the pretrained model and the additional ground truth the OCRopus code is adapted to allow for alphabet expansion or reduction. The character set is now capable of flexibly adding and deleting characters from the pretrained alphabet when an existing model is loaded. For our experiments we use a self-trained mixed model on early Latin prints and the two standard OCRopus models on modern English and German Fraktur texts. The evaluation on seven early printed books showed that training from the Latin mixed model reduces the average amount of errors by 43% and 26%, respectively compared to training from scratch with 60 and 150 lines of ground truth, respectively. Furthermore, it is shown that even building from mixed models trained on data unrelated to the newly added training and test data can lead to significantly improved recognition results
    • ā€¦
    corecore