184 research outputs found

    高精度3次元近距離レーダに関する研究

    Get PDF
    Tohoku University佐藤源之課

    Parametric Level-sets Enhanced To Improve Reconstruction (PaLEnTIR)

    Full text link
    In this paper, we consider the restoration and reconstruction of piecewise constant objects in two and three dimensions using PaLEnTIR, a significantly enhanced Parametric level set (PaLS) model relative to the current state-of-the-art. The primary contribution of this paper is a new PaLS formulation which requires only a single level set function to recover a scene with piecewise constant objects possessing multiple unknown contrasts. Our model offers distinct advantages over current approaches to the multi-contrast, multi-object problem, all of which require multiple level sets and explicit estimation of the contrast magnitudes. Given upper and lower bounds on the contrast, our approach is able to recover objects with any distribution of contrasts and eliminates the need to know either the number of contrasts in a given scene or their values. We provide an iterative process for finding these space-varying contrast limits. Relative to most PaLS methods which employ radial basis functions (RBFs), our model makes use of non-isotropic basis functions, thereby expanding the class of shapes that a PaLS model of a given complexity can approximate. Finally, PaLEnTIR improves the conditioning of the Jacobian matrix required as part of the parameter identification process and consequently accelerates the optimization methods by controlling the magnitude of the PaLS expansion coefficients, fixing the centers of the basis functions, and the uniqueness of parametric to image mappings provided by the new parameterization. We demonstrate the performance of the new approach using both 2D and 3D variants of X-ray computed tomography, diffuse optical tomography (DOT), denoising, deconvolution problems. Application to experimental sparse CT data and simulated data with different types of noise are performed to further validate the proposed method.Comment: 31 pages, 56 figure

    Inversion conjointe des données électriques et de radar en forage

    Get PDF
    RÉSUMÉ Dans le cadre de cette thèse, deux algorithmes d‘inversion conjointe des données électriques et de radar en forage ont été développés. Le premier algorithme combine une approche basée sur l‘échange de l‘information structurale entre deux inversions séparées et une régularisation dans le domaine des ondelettes qui force la solution à avoir une représentation creuse des coefficients en ondelettes. Cette régularisation consiste à appliquer un algorithme de seuillage doux à chaque itération d‘un algorithme de descente. L‘opération de seuillage nécessite le calcul de seuils qui sont déterminés dans notre cas en maximisant un critère de similarité structurale entre les modèles de résistivité et de lenteur. Comme la régularisation dans le domaine des ondelettes permet la reconstruction des discontinuités de contraste fort ainsi que les zones homogène, nous proposons d‘utiliser le détecteur de contours Canny pour extraire l‘information structurale de chaque modèle. Les contours ainsi détectés sont utilisés pour construire des matrices de pondération qui sont appliquées à la matrice de rugosité de chaque inversion séparée. Pour valider cet algorithme trois modèles synthétiques ont été utilisés. Les résultats montrent que celui-ci permet d‘améliorer la résolution spatiale, ainsi qu‘une meilleure estimation des propriétés physiques, en comparaison avec l‘inversion séparée. De plus, il présente l‘avantage d‘être très robuste lorsque le niveau du bruit est élevé. Dans le deuxième algorithme, on propose de combiner une inversion coopérative par zonation et une approche bayésienne hiérarchique. L‘inversion coopérative par zonation consiste à utiliser séquentiellement une approche de classification non-hiérarchique et un algorithme d‘inversion séparée. Dans un processus itératif, l‘algorithme de classification non-hiérarchique est appliqué sur les résultats obtenus par inversion séparée pour générer des modèles composés de plusieurs zones homogènes représentant chacune une certaine lithologie du milieu investigué. Les modèles ainsi construits sont ensuite utilisés comme modèles a priori dans une nouvelle étape d‘inversion séparée. La solution obtenue par une telle approche peut être biaisé vers le modèle a priori qui est fonction du nombre de classes dans l‘algorithme de classification non-hiérarchique.----------ABSTRACT We present two joint structural inversion algorithm for cross-hole electrical resistance tomography (ERT) and cross-hole radar travel time tomography (RTT). The first algorithm proceeds by combining the exchange of structural information and a regularization method that consists of imposing an L1-norm penalty in the wavelet domain. The minimization of the L1-norm penalty is carried out using an iterative soft-thresholding algorithm. The thresholds are estimated by maximizing a structural similarity criterion, which is a function of the two (ERT and RTT) inverted models. Besides, the regularization in the wavelet basis allows for the possibility of sharp discontinuities superimposed on a smoothly varying background. Hence the structural information is extracted from each model using a Canny edge detector. The detected edge serves to construct a weighting matrix that is used to alter the smoothness matrix constraint. To validate our methodology and its implementation, three synthetic models were created. Experiments demonstrate that the proposed approach improves the spatial resolution and quantitative estimation of physical parameters. In addition, it seems to be more robust in high noise level condition. In the second algorithm, we propose to combine a zonal cooperative inversion (ZCI) scheme with a hierarchical Bayesian approach, in order to invert cooperatively cross-hole ERT data and cross-hole radar travel time data. The basic idea of ZCI is to use cooperatively cluster analysis and separate inversion algorithm. For each iteration cluster analysis of separate inversion results is used to construct models that contain the parameter characteristics of dominant subsurface structures. These constructed models are then used as starting model in the next iteration of separate inversion. The resulting models are then biased to starting models which are a function of the number of clusters. To overcome this problem, we formulate the inverse problem within a hierarchical Bayesian framework where the hierarchical prior distribution is based on the a priori models constructed from cluster analysis

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Towards data assimilation in ice-dynamic models: the (geo)physical basis / Olaf Eisen

    Get PDF

    OFDM passive radar employing compressive processing in MIMO configurations

    Get PDF
    A key advantage of passive radar is that it provides a means of performing position detection and tracking without the need for transmission of energy pulses. In this respect, passive radar systems utilising (receiving) orthogonal frequency division multiplexing (OFDM) communications signals from transmitters using OFDM standards such as long term evolution (LTE), WiMax or WiFi, are considered. Receiving a stronger reference signal for the matched filtering, detecting a lower target signature is one of the challenges in the passive radar. Impinging at the receiver, the OFDM waveforms supply two-dimensional virtual uniform rectangul ararray with the first and second dimensions refer to time delays and Doppler frequencies respectively. A subspace method, multiple signals classification (MUSIC) algorithm, demonstrated the signal extraction using multiple time samples. Apply normal measurements, this problem requires high computational resources regarding the number of OFDM subcarriers. For sub-Nyquist sampling, compressive sensing (CS) becomes attractive. A single snap shot measurement can be applied with Basis Pursuit (BP), whereas l1-singular value decomposition (l1-SVD) is applied for the multiple snapshots. Employing multiple transmitters, the diversity in the detection process can be achieved. While a passive means of attaining three-dimensional large-set measurements is provided by co-located receivers, there is a significant computational burden in terms of the on-line analysis of such data sets. In this thesis, the passive radar problem is presented as a mathematically sparse problem and interesting solutions, BP and l1-SVD as well as Bayesian compressive sensing, fast-Besselk, are considered. To increase the possibility of target signal detection, beamforming in the compressive domain is also introduced with the application of conve xoptimization and subspace orthogonality. An interference study is also another problem when reconstructing the target signal. The networks of passive radars are employed using stochastic geometry in order to understand the characteristics of interference, and the effect of signal to interference plus noise ratio (SINR). The results demonstrate the outstanding performance of l1-SVD over MUSIC when employing multiple snapshots. The single snapshot problem along with fast-BesselK multiple-input multiple-output configuration can be solved using fast-BesselK and this allows the compressive beamforming for detection capability
    corecore