7,926 research outputs found

    A note on forbidding clique immersions

    Full text link
    Robertson and Seymour proved that the relation of graph immersion is well-quasi-ordered for finite graphs. Their proof uses the results of graph minors theory. Surprisingly, there is a very short proof of the corresponding rough structure theorem for graphs without KtK_t-immersions; it is based on the Gomory-Hu theorem. The same proof also works to establish a rough structure theorem for Eulerian digraphs without K⃗t\vec{K}_t-immersions, where K⃗t\vec{K}_t denotes the bidirected complete digraph of order tt

    The structure of graphs not admitting a fixed immersion

    Get PDF
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall

    The structure of graphs not admitting a fixed immersion

    Full text link
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall

    Constructing graphs with no immersion of large complete graphs

    Full text link
    In 1989, Lescure and Meyniel proved, for d=5,6d=5, 6, that every dd-chromatic graph contains an immersion of KdK_d, and in 2003 Abu-Khzam and Langston conjectured that this holds for all dd. In 2010, DeVos, Kawarabayashi, Mohar, and Okamura proved this conjecture for d=7d = 7. In each proof, the dd-chromatic assumption was not fully utilized, as the proofs only use the fact that a dd-critical graph has minimum degree at least d−1d - 1. DeVos, Dvo\v{r}\'ak, Fox, McDonald, Mohar, and Scheide show the stronger conjecture that a graph with minimum degree d−1d-1 has an immersion of KdK_d fails for d=10d=10 and d≥12d\geq 12 with a finite number of examples for each value of dd, and small chromatic number relative to dd, but it is shown that a minimum degree of 200d200d does guarantee an immersion of KdK_d. In this paper we show that the stronger conjecture is false for d=8,9,11d=8,9,11 and give infinite families of examples with minimum degree d−1d-1 and chromatic number d−3d-3 or d−2d-2 that do not contain an immersion of KdK_d. Our examples can be up to (d−2)(d-2)-edge-connected. We show, using Haj\'os' Construction, that there is an infinite class of non-(d−1)(d-1)-colorable graphs that contain an immersion of KdK_d. We conclude with some open questions, and the conjecture that a graph GG with minimum degree d−1d - 1 and more than ∣V(G)∣1+m(d+1)\frac{|V(G)|}{1+m(d+1)} vertices of degree at least mdmd has an immersion of KdK_d
    • …
    corecore