3,364 research outputs found

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    On Content-centric Wireless Delivery Networks

    Full text link
    The flux of social media and the convenience of mobile connectivity has created a mobile data phenomenon that is expected to overwhelm the mobile cellular networks in the foreseeable future. Despite the advent of 4G/LTE, the growth rate of wireless data has far exceeded the capacity increase of the mobile networks. A fundamentally new design paradigm is required to tackle the ever-growing wireless data challenge. In this article, we investigate the problem of massive content delivery over wireless networks and present a systematic view on content-centric network design and its underlying challenges. Towards this end, we first review some of the recent advancements in Information Centric Networking (ICN) which provides the basis on how media contents can be labeled, distributed, and placed across the networks. We then formulate the content delivery task into a content rate maximization problem over a share wireless channel, which, contrasting the conventional wisdom that attempts to increase the bit-rate of a unicast system, maximizes the content delivery capability with a fixed amount of wireless resources. This conceptually simple change enables us to exploit the "content diversity" and the "network diversity" by leveraging the abundant computation sources (through application-layer encoding, pushing and caching, etc.) within the existing wireless networks. A network architecture that enables wireless network crowdsourcing for content delivery is then described, followed by an exemplary campus wireless network that encompasses the above concepts.Comment: 20 pages, 7 figures,accepted by IEEE Wireless Communications,Sept.201
    • …
    corecore