1,389 research outputs found

    Smart hands for the EVA retriever

    Get PDF
    Dexterous, robotic hands are required for the extravehicular activity retriever (EVAR) system being developed by the NASA Johnson Space Center (JSC). These hands, as part of the EVAR system, must be able to grasp objects autonomously and securely which inadvertently separate from the Space Station. Development of the required hands was initiated in 1987. Outlined here are the hand development activities, including design considerations, progress to date, and future plans. Several types of dexterous hands that were evaluated, along with a proximity-sensing capability that was developed to initiate a reflexive, adaptive grasp, are described. The evaluations resulted in the design and fabrication of a 6-degree-of-freedom (DOF) hand that has two fingers and a thumb arranged in an anthropomorphic configuration. Finger joint force and position sensors are included in the design, as well as infrared proximity sensors which allow initiation of the grasp sequence when an object is detected within the grasp envelope

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Pouch Motors: Printable Soft Actuators Integrated with Computational Design

    Get PDF
    We propose pouch motors, a new family of printable soft actuators integrated with computational design. The pouch motor consists of one or more inflatable gas-tight bladders made of sheet materials. This printable actuator is designed and fabricated in a planar fashion. It allows both easy prototyping and mass fabrication of affordable robotic systems. We provide theoretical models of the actuators compared with the experimental data. The measured maximum stroke and tension of the linear pouch motor are up to 28% and 100 N, respectively. The measured maximum range of motion and torque of the angular pouch motor are up to 80° and 0.2 N, respectively. We also develop an algorithm that automatically generates the patterns of the pouches and their fluidic channels. A custom-built fabrication machine streamlines the automated process from design to fabrication. We demonstrate a computer-generated life-sized hand that can hold a foam ball and perform gestures with 12 pouch motors, which can be fabricated in 15 min.National Science Foundation (U.S.) (1240383)National Science Foundation (U.S.) (1138967)United States. Department of Defens
    • …
    corecore