66 research outputs found

    A miniature 7g jumping robot

    Get PDF
    Jumping can be a very efficient mode of locomotion for small robots to overcome large obstacles and travel in natural, rough terrain. In this paper we present the development and characterization of a novel 5cm, 7g jumping robot. It can jump obstacles as high as more than 27 times its own size and outperforms existing jumping robots with respect to jump height per weight and jump height per size. It employs elastic elements in a four bar linkage leg system to allow for very powerful jumps and adjustment of jumping force, take off angle and force profile during the acceleration phase

    Bioinspired Jumping Locomotion for Miniature Robotics

    Get PDF
    In nature, many small animals use jumping locomotion to move in rough terrain. Compared to other modes of ground locomotion, jumping allows an animal to overcome obstacles that are relatively large compared to its size. In this thesis we outline the main design challenges that need to be addressed when building miniature jumping robots. We then present three novel robotic jumpers that solve those challenges and outperform existing similar jumping robots by one order of magnitude with regard to jumping height per size and weight. The robots presented in this thesis, called EPFL jumper v1, EPFL jumper v2 and EPFL jumper v3 have a weight between 7g and 14.3g and are able to jump up to 27 times their own size, with onboard energy and control. This high jumping performance is achieved by using the same mechanical design principles as found in jumping insects such as locusts or fleas. Further, we present a theoretical model which allows an evaluation whether the addition of wings could potentially allow a jumping robot to prolong its jumps. The results from the model and the experiments with a winged jumping robot indicate that for miniature robots, adding wings is not worthwhile when moving on ground. However, when jumping from an elevated starting position, adding wings can lead to longer distances traveled compared to jumping without wings. Moreover, it can reduce the kinetic energy on impact which needs to be absorbed by the robot structure. Based on this conclusion, we developed the EPFL jumpglider, the first miniature jumping and gliding robot that has been presented so far. It has a mass of 16.5g and is able to jump from elevated positions, perform steered gliding flight, land safely and locomote on ground with repetitive jumps1. ______________________________ 1See the collection of the accompanying videos at http://lis.epfl.ch/microglider/moviesAll.zi

    Novel Integrated System Architecture for an Autonomous Jumping Micro-Robot

    Get PDF
    As the capability and complexity of robotic platforms continue to evolve from the macro to micro-scale, innovation of such systems is driven by the notion that a robot must be able to sense, think, and act [1]. The traditional architecture of a robotic platform consists of a structural layer upon which, actuators, controls, power, and communication modules are integrated for optimal system performance. The structural layer, for many micro-scale platforms, has commonly been implemented using a silicon die, thus leading to robotic platforms referred to as "walking chips" [2]. In this thesis, the first-ever jumping microrobotic platform is demonstrated using a hybrid integration approach to assemble on-board sensing and power directly onto a polymer chassis. The microrobot detects a change in light intensity and ignites 0.21mg of integrated nanoporous energetic silicon, resulting in 246ยตJ of kinetic energy and a vertical jump height of 8cm

    Steerable miniature jumping robot

    No full text

    ๋ฐฉํ–ฅ ์ „ํ™˜, ๋„์•ฝ ๊ฐ๋„ ์กฐ์ ˆ, ์ž์„ธ ๊ต์ •์ด ๊ฐ€๋Šฅํ•œ ์ ํ•‘ ๋กœ๋ด‡

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2019. 2. ์กฐ๊ทœ์ง„.๋„์•ฝ ๋กœ๋ด‡์€ ๋กœ๋ด‡ ์ž์‹ ์˜ ํฌ๊ธฐ๋ณด๋‹ค ํฐ ์žฅ์• ๋ฌผ์„ ๋„˜์–ด ์ด๋™ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋„์•ฝ ์šด๋™๋งŒ์œผ๋กœ ์›ํ•˜๋Š” ์œ„์น˜์— ๋„๋‹ฌํ•˜๊ธฐ ์œ„ํ•ด ๋„๋‹ฌ ๊ฐ€๋Šฅํ•œ ๋ฒ”์œ„๋ฅผ ๋„“ํž ์ˆ˜ ์žˆ๋Š” ๋ฐฉํ–ฅ ์ „ํ™˜, ๋„์•ฝ ๊ฐ๋„ ์กฐ์ ˆ, ์ž์„ธ ๊ต์ • ๊ธฐ๋Šฅ์ด ํ†ตํ•ฉ๋œ ์ ํ•‘ ๋กœ๋ด‡๋“ค์ด ๊ฐœ๋ฐœ๋๋‹ค. ์ด ๋•Œ ์ถ”๊ฐ€ ๊ธฐ๋Šฅ์„ ํ†ตํ•ฉํ•˜๋ฉด ๋กœ๋ด‡์˜ ์งˆ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๊ณ  ๋„์•ฝ ์„ฑ๋Šฅ์ด ๊ฐ์†Œํ•˜๋ฏ€๋กœ ์งˆ๋Ÿ‰์„ ์ค„์ด๊ธฐ ์œ„ํ•œ ์„ค๊ณ„๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐฉํ–ฅ ์ „ํ™˜, ๋„์•ฝ ๊ฐ๋„ ์กฐ์ ˆ, ์ž์„ธ ๊ต์ •์ด ๊ฐ€๋Šฅํ•œ ๋„์•ฝ ๋กœ๋ด‡์„ ์ œ์•ˆํ•˜๋ฉฐ, ๋„์•ฝ ์„ฑ๋Šฅ ๊ฐ์†Œ๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๋ฉ”์ปค๋‹ˆ์ฆ˜๊ณผ ๊ตฌ๋™๊ธฐ๋ฅผ ๊ณต์œ ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋กœ๋ด‡์ด ์„ค๊ณ„๋˜์—ˆ๋‹ค. ๋กœ๋ด‡์˜ ์งˆ๋Ÿ‰์€ 70.1 g์œผ๋กœ ์ตœ๋Œ€ ๋†’์ด 1.02 m, ์ตœ๋Œ€ ๊ฑฐ๋ฆฌ 1.28 m๋ฅผ ๋„์•ฝํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์ „ ๋ฐฉํ–ฅ์œผ๋กœ ๋„์•ฝํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ฐ˜๋ณต ๋„์•ฝ์œผ๋กœ ๋” ๋จผ ๊ณณ์— ๋„๋‹ฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๋กœ๋ด‡์˜ ๊ฑฐ๋™์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๋™์—ญํ•™ ๋ชจ๋ธ์„ ์„ธ์› ์œผ๋ฉฐ, ๋ฏธ๋„๋Ÿฌ์ง์ด ์—†์ด ๋„์•ฝํ•˜๋Š” ๊ฒฝ์šฐ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ฏธ๋„๋Ÿฌ์ง์ด ํฌํ•จ๋œ ๋„์•ฝ์— ๋Œ€ํ•ด์„œ๋„ ๋กœ๋ด‡์˜ ๊ฑฐ๋™์„ ํ™•์ธํ•˜๊ณ  ๋„์•ฝ ๊ถค์ ์„ ๊ณ„ํšํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ตฌ๋™๊ธฐ์˜ ์ˆ˜๋ณด๋‹ค ๋งŽ์€ ๊ธฐ๋Šฅ์˜ ์ˆ˜๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ์„ค๊ณ„ ๋ฐฉ๋ฒ•์€ ๋‹ค๋ฅธ ์†Œํ˜• ๋กœ๋ด‡์˜ ์„ค๊ณ„์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ์ด ๋กœ๋ด‡์€ ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ์ˆ˜์ƒ‰, ์ •์ฐฐ ํ˜น์€ ํƒ์‚ฌ์™€ ๊ฐ™์€ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ ํ™œ์šฉ ๊ฐ€๋Šฅํ•  ๊ฒƒ์ด๋‹ค.Jumping enables the robot to overcome obstacles that are larger than its own size. In order to reach the desired location with only jumping, the jumping robots integrated with additional functions โ€“steering, adjusting the take-off angle, and self-righting โ€“ have been developed to expand the reachable range of the robot. Design to reduce mass is required as the integration of additional functions increases the mass of the robot and reduces the jumping performance. In this thesis, a jumping robot capable of steering, adjusting the take-off angle, and self-righting is proposed with the design of actuator and mechanism sharing to minimize the jumping performance degradation. The robot, with a mass of 70.1 g jumps up to 1.02 m in vertical height, and 1.28 m in horizontal distance. It can change the jumping height and distance by adjusting the take-off angle from 40ยฐ to 91.9ยฐ. The robot can jump in all directions, and it can reach farther through multiple jumps. A dynamic model is established to predict the behavior of the robot and plan the jumping trajectory not only for jumping without slip but also for jumping with slip. The design method to implement more functions than the number of actuators can be applied to design other small-scale robots. This robot can be deployed to unstructured environments to perform tasks such as search and rescue, reconnaissance, and exploration.Abstract โ…ฐ Contents โ…ฒ List of Tables โ…ด List of Figures โ…ต Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Research Objectives and Contributions 3 1.3. Research Overview 6 Chapter 2. Design 7 2.1. Jumping 8 2.2. Steering 10 2.3. Take-off Angle Adjustment 12 2.4. Self-Righting 13 2.5. Integration 16 Chapter 3. Analysis 19 3.1. Dynamic Modeling 19 3.2. Simulated Results 24 3.3. Jumping Trajectory Planning 33 Chapter 4. Result 35 4.1. Performance 35 4.2. Demonstration 40 Chapter 5. Conclusion 46 Bibliography 49 ๊ตญ๋ฌธ ์ดˆ๋ก 53Maste

    The EPFL jumpglider: A hybrid jumping and gliding robot with rigid or folding wings

    Get PDF
    Recent work suggests that wings can be used to prolong the jumps of miniature jumping robots. However, no functional miniature jumping robot has been presented so far that can successfully apply this hybrid locomotion principle. In this publication, we present the development and characterization of the โ€™EPFL jumpgliderโ€™, a miniature robot that can prolong its jumps using steered hybrid jumping and gliding locomotion over varied terrain. For example, it can safely descend from elevated positions such as stairs and buildings and propagate on ground with small jumps. The publication presents a systematic evaluation of three biologically inspired wing folding mechanisms and a rigid wing design. Based on this evaluation, two wing designs are implemented and compared
    • โ€ฆ
    corecore