835 research outputs found

    Application of Volcano Plots in Analyses of mRNA Differential Expressions with Microarrays

    Full text link
    Volcano plot displays unstandardized signal (e.g. log-fold-change) against noise-adjusted/standardized signal (e.g. t-statistic or -log10(p-value) from the t test). We review the basic and an interactive use of the volcano plot, and its crucial role in understanding the regularized t-statistic. The joint filtering gene selection criterion based on regularized statistics has a curved discriminant line in the volcano plot, as compared to the two perpendicular lines for the "double filtering" criterion. This review attempts to provide an unifying framework for discussions on alternative measures of differential expression, improved methods for estimating variance, and visual display of a microarray analysis result. We also discuss the possibility to apply volcano plots to other fields beyond microarray.Comment: 8 figure

    Alteration of gene expression in mammary gland tissue of dairy cows in response to dietary unsaturated fatty acids

    Get PDF
    The aim of this study was to determine the effects of supplementing unprotected dietary unsaturated fatty acids (UFAs) from different plant oils on gene expression in the mammary gland of grazing dairy cows. A total of 28 Holstein–Friesian dairy cows in mid-lactation were blocked according to parity, days in milk, milk yield and fat percentage. The cows were then randomly assigned to four UFA sources based on rapeseed, soybean, linseed or a mixture of the three oils for 23 days, after which, all 28 cows were switched to a control diet for an additional 28 days. On the last day of both periods, mammary gland biopsies were taken to study genome-wide differences in gene expression on Affymetrix GeneChip® Bovine Genome Arrays (no. 900493) by ServiceXS (Leiden, The Netherlands). Supplementation with UFAs resulted in increased milk yield but decreased milk fat and protein percentages. Furthermore, the proportion of de novo fatty acids (FAs) in the milk was reduced, whereas that of long-chain FAs increased. Applying a statistical cut-off of false discovery rate of q-value

    Identification of gene modules associated with low temperatures response in Bambara groundnut by network-based analysis

    Get PDF
    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip) coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01) under the sub-optimal (23°C) and very sub-optimal (18°C) temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes) that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties

    DEN: an R-Bioconductor based package to extract active sub-networks from human interaction map by integrating gene-expression data

    Get PDF
    Living cells are complex, dynamic, self-regulatory, interactive systems, showing differential states across time and space. Complexity of cellular systems is highlighted with the multi-layered regulatory mechanisms involving the interactions between bio-molecules (such as DNA, RNA, mi-RNA and proteins). These interactions are analyzed in the form of static networks. Likewise, number of experimental techniques like microarray, RNASeq allow quantification of cellular dynamics and aid in discerning differential gene expression across diverse conditions. Computational biology is in need of methods for integration of static networks and gene expression data, since it provides interesting insights into the dynamics of biological systems. DEN is an R/Bioconductor based package designed to assemble different types of human bio-molecular interactions as a complete interactome and contains functions to extract dynamic active networks by integration of gene expression data

    The bench scientist\u27s guide to statistical analysis of RNA-Seq data

    Get PDF
    RNA sequencing (RNA-Seq) is emerging as a highly accurate method to quantify transcript abundance. However, analyses of the large data sets obtained by sequencing the entire transcriptome of organisms have generally been performed by bioinformatics specialists. Here we provide a step-by-step guide and outline a strategy using currently available statistical tools that results in a conservative list of differentially expressed genes. We also discuss potential sources of error in RNA-Seq analysis that could alter interpretation of global changes in gene expression

    Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats

    Get PDF
    This study reports on a comprehensive comparison of the effects of soy and meat proteins given at the recommended level on physiological markers of metabolic syndrome and the hepatic transcriptome. Male rats were fed semi-synthetic diets for 1 wk that differed only regarding protein source, with casein serving as reference. Body weight gain and adipose tissue mass were significantly reduced by soy but not meat proteins. The insulin resistance index was improved by soy, and to a lesser extent by meat proteins. Liver triacylglycerol contents were reduced by both protein sources, which coincided with increased plasma triacylglycerol concentrations. Both soy and meat proteins changed plasma amino acid patterns. The expression of 1571 and 1369 genes were altered by soy and meat proteins respectively. Functional classification revealed that lipid, energy and amino acid metabolic pathways, as well as insulin signaling pathways were regulated differently by soy and meat proteins. Several transcriptional regulators, including NFE2L2, ATF4, Srebf1 and Rictor were identified as potential key upstream regulators. These results suggest that soy and meat proteins induce distinct physiological and gene expression responses in rats and provide novel evidence and suggestions for the health effects of different protein sources in human diets

    The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in Arabidopsis roots

    Get PDF
    Arabidopsis thaliana is a host for the sugar beet cyst nematode Heterodera schachtii. Juvenile nematodes invade the roots and induce the development of a syncytium, which functions as a feeding site for the nematode. Here, we report on the transcriptome of syncytia induced in the roots of Arabidopsis. Microaspiration was employed to harvest pure syncytium material, which was then used to prepare RNA for hybridization to Affymetrix GeneChips. Initial data analysis showed that the gene expression in syncytia at 5 and 15 days post-infection did not differ greatly, and so both time points were compared together with control roots. Out of a total of 21 138 genes, 18.4% (3893) had a higher expression level and 15.8% (3338) had a lower expression level in syncytia, as compared with control roots, using a multiple-testing corrected false discovery rate of below 5%. A gene ontology (GO) analysis of up- and downregulated genes showed that categories related to high metabolic activity were preferentially upregulated. A principal component analysis was applied to compare the transcriptome of syncytia with the transcriptome of different Arabidopsis organs (obtained by the AtGenExpress project), and with specific root tissues. This analysis revealed that syncytia are transcriptionally clearly different from roots (and all other organs), as well as from other root tissues

    Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes

    Get PDF
    Plant genomes contain several hundred defensin-like (DEFL) genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species

    Plant transcriptional responses to explosives as revealed by \u3cem\u3eArabidopsis thaliana\u3c/em\u3e microarrays and its application in phytoremediation and phytosensing

    Get PDF
    This research focused on understanding genetic responses of plants to explosives, which is necessary to produce plants to detect and clean soil and water contaminated with toxic explosive compounds. The first study used microarray technology to reveal transcriptional changes in the model plant Arabidopsis thaliana exposed to the explosive compounds RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine; Royal Demolition Explosive or Research Department Explosive) and TNT (2,4,6-trinitrotoluene). This study yielded a list of genes up- and downregulated by explosive compounds, which can be potentially used for phytoremediation (remediation using plants) or phytosensing (detection using plants) of explosive compounds. The second study presented biotechnology tools to enhance phytosensing that might have application in not only explosives phytosensing but also sensing of other contaminants or important biological agents. This study addressed the problem of low detectable levels of reporter gene signal from a phytosensor and the results suggest the potential use of a site-specific recombination system to amplify the reporter gene signal. The final study addressed microarray data analysis and best practices for statistical analysis of microarray data. Standard parametric approaches for microarray analysis can be very conservative, indicating no unusable information from expensive microarray experiments. A nonparametric method of analysis on a variety of microarray datasets proved to be effective in providing reliable and useful information, when the standard parametric approach used was too conservative

    Identification of differentially expressed genes between developing seeds of different soybean cultivars

    Get PDF
    AbstractSoybean is a major source of protein and oil and a primary feedstock for biodiesel production. Research on soybean seed composition and yield has revealed that protein, oil and yield are controlled quantitatively and quantitative trait loci (QTL) have been identified for each of these traits. However, very limited information is available regarding the genetic mechanisms controlling seed composition and yield. To help address this deficiency, we used Affymetrix Soybean GeneChips® to identify genes that are differentially expressed between developing seeds of the Minsoy and Archer soybean cultivars, which differ in seed weight, yield, protein content and oil content. A total of 700 probe sets were found to be expressed at significantly different (defined as having an adjusted p-value below or equal to 0.05 and an at least 2-fold difference) levels between the two cultivars at one or more of the three developmental stages and in at least one of the two years assayed. Comparison of data from soybeans collected in two different years revealed that 97 probe sets were expressed at significantly different levels in both years. Functional annotations were assigned to 78% of these 97 probe sets based on the SoyBase Affymetrix™ GeneChip® Soybean Genome Array Annotation. Genes involved in receptor binding/activity and protein binding are overrepresented among the group of 97 probe sets that were differentially expressed in both years assayed. Probe sets involved in growth/development, signal transduction, transcription, defense/stress response and protein and lipid metabolism were also identified among the 97 probe sets and their possible implications in the regulation of agronomic traits are discussed. As the Minsoy and Archer soybean cultivars differ with respect to seed size, yield, protein content and lipid content, some of the differentially expressed probe sets identified in this study may thus play important roles in controlling these traits. Others of these probe sets may be involved in regulation of general seed development or metabolism. All microarray data and expression values after GCRMA are available at the Gene Expression Omnibus (GEO) at NCBI (http://www.ncbi.nlm.nih.gov/geo), under accession number GSE21598
    corecore