488 research outputs found

    Determination of Lactoferrin and Immunoglobulin G in Animal Milks by New Immunosensors

    Get PDF
    Two different immunosensors, recently developed for the determination of antibacterial proteins (lactoferrin and immunoglobulin G) in buffalo milk and in other commercial animal milks samples, were used in the present study. The aim was to propose these immunosensor methods for routine control of important diet products, such as cow and goat milks, and in particular buffalo milk. To this end we employed two different kinds of immunosensors: one for the analysis of immunoglobulin G (IgG), the other was a new amperometric immunosensor for lactoferrin analysis. Lactoferrin and IgG immunosensors were also used for the determination of lactoferrin and immunoglobulin G in buffalo milk on different days of lactation

    Graphene Quantum Dot-Based Electrochemical Immunosensors for Biomedical Applications

    Get PDF
    In the area of biomedicine, research for designing electrochemical sensors has evolved over the past decade, since it is crucial to selectively quantify biomarkers or pathogens in clinical samples for the efficacious diagnosis and/or treatment of various diseases. To fulfil the demand of rapid, specific, economic, and easy detection of such biomolecules in ultralow amounts, numerous nanomaterials have been explored to effectively enhance the sensitivity, selectivity, and reproducibility of immunosensors. Graphene quantum dots (GQDs) have garnered tremendous attention in immunosensor development, owing to their special attributes such as large surface area, excellent biocompatibility, quantum confinement, edge effects, and abundant sites for chemical modification. Besides these distinct features, GQDs acquire peroxidase (POD)-mimicking electro-catalytic activity, and hence, they can replace horseradish peroxidase (HRP)-based systems to conduct facile, quick, and inexpensive label-free immunoassays. The chief motive of this review article is to summarize and focus on the recent advances in GQD-based electrochemical immunosensors for the early and rapid detection of cancer, cardiovascular disorders, and pathogenic diseases. Moreover, the underlying principles of electrochemical immunosensing techniques are also highlighted. These GQD immunosensors are ubiquitous in biomedical diagnosis and conducive for miniaturization, encouraging low-cost disease diagnostics in developing nations using point-of-care testing (POCT) and similar allusive techniques.TU Berlin, Open-Access-Mittel - 201

    Nanomaterials for Healthcare Biosensing Applications

    Get PDF
    In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing

    New Generation Biosensors based on Ellipsometry

    Get PDF

    State-of-the-Art of (Bio)Chemical Sensor Developments in Analytical Spanish Groups

    Get PDF
    (Bio)chemical sensors are one of the most exciting fields in analytical chemistry today. The development of these analytical devices simplifies and miniaturizes the whole analytical process. Although the initial expectation of the massive incorporation of sensors in routine analytical work has been truncated to some extent, in many other cases analytical methods based on sensor technology have solved important analytical problems. Many research groups are working in this field world-wide, reporting interesting results so far. Modestly, Spanish researchers have contributed to these recent developments. In this review, we summarize the more representative achievements carried out for these groups. They cover a wide variety of sensors, including optical, electrochemical, piezoelectric or electro-mechanical devices, used for laboratory or field analyses. The capabilities to be used in different applied areas are also critically discussed

    Label-Free Electrical Detection Using Carbon Nanotube-Based Biosensors

    Get PDF
    Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs). In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs). Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors

    Construction of an immunosensor for human cytomegalovirus infection diagnosis

    Get PDF
    Human Cytomegalovirus (HCMV) is a herpes virus that establish a lifelong latent infection of the host, so once a person is infected, the virus persists in a state of cellular latency. Following primary infection, HCMV is excreted in body fluids and its transmission occurs through mucous contact and exposure to urine, blood transfusion and organ or bone marrow transplant procedures, being extremely difficult to identify the transmission route. HCMV infection induces no overt disease in healthy carriers, owing to effective immune control, but this infection can be severe or even fatal in immunosuppressed individuals, fetuses and newborns. Furthermore, HCMV is also relatively common among women in reproductive age, with seroprevalence ranging from 45 to 100%. The diagnosis of HCMV disease remains controversial because of the difficulty of separating patients who are asymptomatic but shedding HCMV in body fluids, from patients who have the symptomatic disease. Nowadays the most common methods for diagnosis of HCMV infection are: - serological tests based on IgM and IgG detection; - direct free HCMV detection by viral isolation and viral antigens detection in tissue, urine or saliva samples; and - PCR, which is based on amplification of selected segments of the HCMV genome and its hybridization. However, these methods are disadvantageous to be routinely used in clinical diagnosis as point of care because they require a long time to perform or are costly. Thus, there is a need to develop a method which is fast, effective and inexpensive for this virus diagnosis. As an alternative, the use of capture antibodies against the envelope glycoproteins of HCMV open the possibility of faster immunochemical methods. Glycoprotein B of HCMV (gB) is the dominant antigen in the envelope of HCMV, being possible its determination in body fluids like urine and saliva, where viral loads are higher. In consequence, the development of new methods based on the accurate detection of gB in body fluids, is of great interest. In recent years, electrochemical biosensors were widely used to determine various substances with different properties and for continuous monitoring of biological processes. Bioanalytical assays such as immunoassays (IAs), are also very important in many fields. IAs are based on antibodies ability to form complexes with the corresponding antigen, making them highly specific and selective. Thus, electrochemical immunoassays offer enhanced sensitivities and reduced instrumentation costs compared to their counterparts using other transducing elements. Also, screen-printed electrodes (SPE) contribute to develop miniaturized, easy to handle and reliable IAs devices. In addition, SPEs allow for a high-volume production of electrode systems with uniform size and geometry, ensuring measurement reproducibility at low cost. They are also very versatile, since a wide range of designs and materials can be applied in their construction. The present work describes the development of an alternative method for HCMV gB detection and quantification. It is intended the development of an immunosensor to quantify the presence of gB in urine samples. For the construction of this device we made use of a sandwich type immunoassay, wherein HCMV gB is sandwiched between a primary antibody, previously immobilized on a solid surface, and a labelled secondary antibody. Sandwich immunoassays are currently the most commonly and successfully used, mainly due to their high sensitivity and minimized background signal. Moreover, they can be performed on any kind of sensing surface, being the main criterion for these assays the availability of two antibodies with different binding sites on the target antigens. Three different immunoassays were developed. The first one was an electrochemical immunoassay, gB detection was carried out over electrochemical stripping analysis of silver nanoparticles quantitatively deposited on the immunosensor through catalysis by nanogold labels. Capture anti-gB antibodies were absorbed on screen-printed carbon electrodes, and a secondary anti-gB antibody labelled with gold nanoparticles. Nevertheless, the reproducibility of the method (RSDs ≈ 12%) was not very good owing to the random immobilization of the primary antibody on the working electrode, which resulted in small efficiency of antigen detection. Contributing to the low observed RSD was also the nonspecific deposition of silver on the sensor surface. For these reasons, it was decided the development of another approach to overcome the observed limitations. A spectrophotometric magnetic particle-based enzyme immunoassays (mpEIA) was constructed. The use of magnetic beads (MBs) functionalized with protein G (MBs-prG) as solid surface for primary antibody (mAb1) immobilization allows its oriented attachment, resulting in a more effective recognition of gB. Additionally, they improve the affinity interaction thanks to a faster assay kinetics of the dispersed beads in urine samples. The results obtained with this spectrophotometric mpEIA compared favorably to those obtained in other reports of gB detection in terms of analytical performance. Despite the advantages, ELISA readers cannot be applied as portable devices to make in situ measurements. It was then proposed an adaptation to electrochemical transduction on screen-printed electrodes. This variation aimed the achievement of a simple, sensitive, disposable and portable device. It was maintained the immunoassay scheme based on the analyte protein gB sandwiched between the primary monoclonal antibody and the secondary anti-gB-HCMV HRP labelled antibody. Similarly, magnetic particles functionalized with protein G (MBs-prG), were used. The developed immunosensor was shown to be a portable, fast, accurate, rigorous, low cost and an effective method of detecting gB in human urine samples for the valuable diagnosis/screening of HCMV infections.O citomegalovírus humano (HCMV) é o maior vírus da família Herpesviridae e da subfamília β-herpesviridae. Como em todos os vírus herpes, a infeção pelo HCMV resulta no estabelecimento de uma infeção latente ao longo da vida do hospedeiro. Assim, sempre que uma pessoa é infetada, o vírus persiste num estado de latência celular, no qual as células infetadas não produzem nenhuma partícula infeciosa do vírus, mas retêm o seu genoma completo, tendo potencial para começar a produzir partículas virais mais tarde. Após infeção primária, o HCMV é excretado em fluidos corporais, como urina, sangue, saliva, lágrimas, secreções vaginais e cervicais, sêmen e leite materno. Este processo pode durar de meses a anos. Dessa forma, o HCMV pode ser transmitido por via oral, congénita, sexual, através da exposição à urina, por transfusão de sangue e transplante de órgãos ou medula óssea, sendo extremamente difícil identificar a sua via de transmissão. O HCMV é considerado um vírus de paradoxos, pois este pode ser um potencial assassino ou um companheiro silencioso para toda a vida. Isto deve-se ao facto de a infeção pelo HCMV não induzir doença evidente em portadores saudáveis, devido a um controle imunológico efetivo, contudo a infeção pode ser grave e até fatal em indivíduos imunocomprometidos, como é o caso de transplantados, infetados pelo vírus da imunodeficiência humana (HIV) e aqueles com um sistema imunológico imaturo, como fetos e recém-nascidos. O HCMV também é considerado um dos mais bem-sucedidos parasitas, pois pode ser encontrado tanto em sociedades industrializadas e desenvolvidas como em grupos indígenas isolados, sendo a infeção por este vírus relativamente comum entre mulheres em idade reprodutiva, com seroprevalência variando de 45 a 100%. O diagnóstico da infeção por HCMV permanece controverso, pois é difícil separar os pacientes assintomáticos (mas que excretam HCMV em fluidos corporais) e que poderão vir a necessitar de terapia, de pacientes com doença sintomática (pneumonia ou retinite). Atualmente, os métodos laboratoriais para o diagnóstico da infeção por HCMV podem ser divididos em técnicas sorológicas e virológicas. Os métodos sorológicos são usados principalmente para avaliar os anticorpos do doador ou do recetor em situações de transplante e prever o risco de os pacientes imunocomprometidos virem a desenvolver doença sintomática. Por outro lado, o diagnóstico virológico da doença por HCMV é geralmente baseado no isolamento do vírus por métodos de cultura. Estes métodos podem ser usados mediante a utilização de amostras de sangue, urina, saliva, fezes, lágrimas, leite materno, secreções cervicais e vaginais e sêmen. Os métodos mais comuns para o diagnóstico da infeção por HCMV são então: - testes sorológicos baseados na deteção de IgM e IgG; - a deteção direta de HCMV através de isolamento viral em cultura de fibroblastos e deteção de antigénios virais em amostras de tecido, urina ou saliva; e - PCR, que se baseia na amplificação de fragmentos específicos do genoma do HCMV e sua posterior hibridização. No entanto, estes métodos apresentam alguns inconvenientes na sua aplicação como métodos de triagem em laboratórios de análises clínicas, pois requerem um longo período de tempo até à obtenção de um diagnóstico ou são caros. Assim, existe a necessidade de desenvolver um método que seja rápido, eficaz e barato para o diagnóstico deste vírus, capaz de ser usado em série. Nos últimos anos, os biossensores eletroquímicos foram amplamente utilizados na determinação de variadas substâncias com diferentes propriedades e para a monitorização contínua de processos biológicos. A deteção eletroquímica é usada devido a sua sensibilidade aprimorada e custos de instrumentação reduzidos em comparação com outros métodos de transdução. Para além disto, para desenvolver dispositivos eletroquímicos confiáveis, miniaturizados e gerenciáveis, a tecnologia screen-printing é uma escolha inteligente. Os elétrodos serigrafados (SPE) contribuem para o desenvolvimento de novos biosensores em dispositivos miniaturizados, que apresentam as vantagens acima descritas, permitindo a obtenção de resultados em poucos minutos. Adicionalmente, os SPEs permitem uma produção massiva de sistemas eletródicos com tamanho e geometria uniformes, garantindo reprodutibilidade entre medições a baixo custo. Outra mais-valia destes sensores é o facto de serem descartáveis, o que evita alguns problemas frequentemente associados aos elétrodos tradicionais, como a necessidade de um processo de limpeza. Eles são igualmente bastante versáteis, uma vez que uma ampla gama de designs e materiais podem ser aplicados para na sua construção. Na literatura podemos encontrar relatos do uso de dispositivos de deteção miniaturizados para o reconhecimento eletroquímico de sequências amplificadas de ADN provenientes de HCMV. Num desses trabalhos, baseado em elétrodos serigrafados, o ADN alvo foi adsorvido e hibridado com uma sonda de ADN biotinilada e os híbridos formados foram determinados com estreptavidina conjugada com peroxidase de rábano (HRP). Apesar da amplificação de sinal ter sido conseguida, a atividade do conjugado tem de ser controlada periodicamente devido à estabilidade da enzima. Para superar essa limitação, um outro grupo explorou outra estratégia recorrendo a marcação do ADN com nanopartículas de ouro. Apesar de terem tido melhores resultados, ambos os métodos descritos não descartam a utilização de PCR, o que os torna dispendiosos e inúteis como métodos de triagem. Um sensor piezoelétrico também foi descrito para detetar a glicoproteína do HCMV. Embora a técnica não dependa de ADN amplificado, requer o uso de instrumentação cara. Adicionalmente, um dispositivo de deteção baseado em imunofluorescência foi desenvolvido por outro grupo, aqui a amostra biológica é aplicada sobre uma superfície de ouro revestida com anticorpos específicos para HCMV (se presente em amostras biológicas, o HCMV é aprisionado na superfície deste). Ensaios positivos e negativos eram discriminados pelo uso de uma sonda fluorescente. A principal desvantagem deste dispositivo é a baixa sensibilidade que compromete a sua aplicabilidade em amostras com baixas cargas virais. Recentemente, foi ainda proposto um imunoensaio para a deteção do antígeno pp65 do HCMV utilizando HPR e nanopartículas de Pt-Pd funcionalizadas com single-walled nanohorns de carbono. A abordagem permitiu a deteção rápida de HCMV, no entanto, o uso de elétrodos de carbono vítreo não é uma alternativa prática para um método de triagem. O presente trabalho descreve o desenvolvimento de um método alternativo para a deteção e quantificação de HCMV gB. O objetivo é construir um imunossensor que determine a presença de gB em amostras de urina. O uso de anticorpos de captura contra as glicoproteínas do envelope do HCMV abre a possibilidade para o desenvolvimento de novos métodos de análise imunoquímica. A glicoproteína B do HCMV (gB) é uma glicoproteína viral que desempenha um papel crucial na entrada do vírus na célula e surge durante os estágios iniciais de uma infeção pelo mesmo vírus. A gB também é o antigénio dominante presente no envelope do HCMV, sendo possível a sua determinação em fluídos corporais como a urina e saliva, onde as cargas virais são maiores. Como consequência, o desenvolvimento de novos métodos baseados na deteção de gB em fluídos corporais é de grande interesse. Para a construção dos dispositivos, usamos sempre imunoensaios com configuração em sandwich, pois a gB é colocada entre um anticorpo primário, previamente imobilizado numa superfície sólida, e um anticorpo secundário marcado. Os imunoensaios em sandwich são atualmente os mais frequentemente usados, principalmente devido a sua alta sensibilidade e correspondente minimização de interferências. Para além disto, podem ser realizados em qualquer tipo de superfície, sendo o principal critério destes ensaios a disponibilidade de dois anticorpos com sítios de ligação diferentes para o mesmo antigénio-alvo. Durante o decorrer deste trabalho foram desenvolvidos três imunoensaios diferentes. O primeiro foi um imunoensaio eletroquímico. Foram usados anticorpos de captura anti-gB absorvidos em elétrodos de carbono serigrafados e um anticorpo secundário anti-gB marcado com nanopartículas de ouro. A deteção de gB foi realizada por meio da análise eletroquímica de nanopartículas de prata depositadas quantitativamente no imunossensor através de catálise por nanopartículas de ouro, as quais foram utilizadas como marcadores do anticorpo secundário. A reprodutibilidade do método (RSDs de cerca de 12%) não foi muito boa devido à imobilização aleatória do anticorpo primário no elétrodo de trabalho, o que resultou numa pequena eficiência de deteção do antígeno (foram observados baixos sinais considerando a grande quantidade de anticorpo utilizado). Contribui-o também para a baixa RSD observada a deposição não específica de prata na superfície do sensor. Por estas razões, decidiu-se desenvolver outra abordagem para superar as limitações observadas. Desenvolvemos um imunoensaio enzimático espectrofotométrico baseados em partículas magnéticas (mpEIA). O uso de esferas magnéticas (MBs) funcionalizadas com proteína G (MBs-prG) como superfície sólida para a imobilização do anticorpo primário (mAb1) permite a sua fixação orientada, resultando num reconhecimento mais efetivo do gB. Para além disto, estas partículas melhoram a interação de afinidade graças a uma cinética de análise mais rápida. O anticorpo secundário foi marcado com HRP para possibilitar a deteção espectrofotométrica. Os resultados obtidos com este mpEIA espectrofotométrico são favoravelmente comparáveis com outros relatos de deteção de gB em termos de desempenho analítico. No entanto, apesar das vantagens, os leitores ELISA não podem ser aplicados como dispositivos portáteis para fazer medições in situ. Para superar essa limitação, o método mpEIA mencionado acima foi adaptado à transdução eletroquímica recorrendo ao uso de elétrodos serigrafados. Esta variação visou a obtenção de um dispositivo simples, sensível, descartável e portátil. É mantido o esquema de imunoensaio com base na proteína analítica gB intercalada entre um anticorpo monoclonal primário e o anticorpo secundário anti-gB marcado com HRP, que permite igualmente deteção eletroquímica. Da mesma forma, partículas magnéticas funcionalizadas com proteína G (MBs-prG) são usadas para permitir a imobilização orientada ao anticorpo (mAb1). O imunossensor desenvolvido mostrou ser um método portátil, rápido, preciso, rigoroso, de baixo custo e, portanto, eficaz na deteção de gB em amostras de urina humana para a valiosa triagem de infeções por HCMV

    Nanomaterials for Advancing the Health Immunosensor

    Get PDF
    Nanotechnology has exerted a significant impact in the development of biosensors allowing more sensible analytical methods. In health applications, the main challenge of the immunoassay is to reach the suitable limit of detection, recognizing different analytes in complex samples like whole blood, serum, urine, and other biological fluids. Different nanomaterials, including metallic, silica and magnetic nanoparticles, quantum dots, carbon nanotubes, and graphene, have been applied, mainly to improve charge electron transfer, catalytic activity, amount of immobilized biomolecules, low-background current, signal-to-noise ratio that consequently increase the sensitivity of immunosensors. Given the great impact of nanotechnology, this chapter intends to discuss new aspects of nanomaterials relating to immunosensor advancement

    Prospects of Nanotechnology in Clinical Immunodiagnostics

    Get PDF
    Nanostructured materials are promising compounds that offer new opportunities as sensing platforms for the detection of biomolecules. Having micrometer-scale length and nanometer-scale diameters, nanomaterials can be manipulated with current nanofabrication methods, as well as self-assembly techniques, to fabricate nanoscale bio-sensing devices. Nanostructured materials possess extraordinary physical, mechanical, electrical, thermal and multifunctional properties. Such unique properties advocate their use as biomimetic membranes to immobilize and modify biomolecules on the surface of nanoparticles. Alignment, uniform dispersion, selective growth and diameter control are general parameters which play critical roles in the successful integration of nanostructures for the fabrication of bioelectronic sensing devices. In this review, we focus on different types and aspects of nanomaterials, including their synthesis, properties, conjugation with biomolecules and their application in the construction of immunosensing devices. Some key results from each cited article are summarized by relating the concept and mechanism behind each sensor, experimental conditions and the behavior of the sensor under different conditions, etc. The variety of nanomaterial-based bioelectronic devices exhibiting novel functions proves the unique properties of nanomaterials in such sensing devices, which will surely continue to expand in the future. Such nanomaterial based devices are expected to have a major impact in clinical immunodiagnostics, environmental monitoring, security surveillance and for ensuring food safety
    corecore