93 research outputs found

    Complete Model for Automatic Object Detection and Localisation on Aerial Images using Convolutional Neural Networks

    Get PDF
    In this paper, a novel approach for an automatic object detection and localisation on aerial images is proposed. Proposed model does not use ground control points (GCPs) and consists of three major phases. In the first phase, optimal flight route is planned in order to capture the area of interest and aerial images are acquired using unmanned aerial vehicle (UAV), followed by creating a mosaic of collected images to obtained larger field-of-view panoramic image of the area of interest and using the obtained image mosaic to create georeferenced map. The image mosaic is then also used to detect objects of interest using the approach based on convolutional neural networks

    Monitorización 3D de cultivos y cartografía de malas hierbas mediante vehículos aéreos no tripulados para un uso sostenible de fitosanitarios

    Get PDF
    En esta Tesis Doctoral se han utilizado las imágenes procedentes de un UAV para abordar la sostenibilidad de la aplicación de productos fitosanitarios mediante la generación de mapas que permitan su aplicación localizada. Se han desarrollado dos formas diferentes y complementarias para lograr este objetivo: 1) la reducción de la aplicación de herbicidas en post-emergencia temprana mediante el diseño de tratamientos dirigidos a las zonas infestadas por malas hierbas en varios cultivos herbáceos; y 2) la caracterización tridimensional (arquitectura y volumen) de cultivos leñosos para el diseño de tratamientos de aplicación localizada de fitosanitarios dirigidos a la parte aérea de los mismos. Para afrontar el control localizado de herbicidas se han estudiado la configuración y las especificaciones técnicas de un UAV y de los sensores embarcados a bordo para su aplicación en la detección temprana de malas hierbas y contribuir a la generación de mapas para un control localizado en tres cultivos herbáceos: maíz, trigo y girasol. A continuación, se evaluaron los índices espectrales más precisos para su uso en la discriminación de suelo desnudo y vegetación (cultivo y malas hierbas) en imágenes-UAV tomadas sobre dichos cultivos en fase temprana. Con el fin de automatizar dicha discriminación se implementó en un entorno OBIA un método de cálculo de umbrales. Finalmente, se desarrolló una metodología OBIA automática y robusta para la discriminación de cultivo, suelo desnudo y malas hierbas en los tres cultivos estudiados, y se evaluó la influencia sobre su funcionamiento de distintos parámetros relacionados con la toma de imágenes UAV (solape, tipo de sensor, altitud de vuelo, momento de programación de los vuelos, entre otros). Por otra parte y para facilitar el diseño de tratamientos fitosanitarios ajustados a las necesidades de los cultivos leñosos se ha desarrollado una metodología OBIA automática y robusta para la caracterización tridimensional (arquitectura y volumen) de cultivos leñosos usando imágenes y modelos digitales de superficies generados a partir de imágenes procedentes de un UAV. Asimismo, se evaluó la influencia de distintos parámetros relacionados con la toma de las imágenes (solape, tipo de sensor, altitud de vuelo) sobre el funcionamiento del algoritmo OBIA diseñado

    On the Use of Unmanned Aerial Systems for Environmental Monitoring

    Get PDF
    Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small- and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, postprocessing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challengespublishersversionPeer reviewe

    Satellite and UAV Platforms, Remote Sensing for Geographic Information Systems

    Get PDF
    The present book contains ten articles illustrating the different possible uses of UAVs and satellite remotely sensed data integration in Geographical Information Systems to model and predict changes in both the natural and the human environment. It illustrates the powerful instruments given by modern geo-statistical methods, modeling, and visualization techniques. These methods are applied to Arctic, tropical and mid-latitude environments, agriculture, forest, wetlands, and aquatic environments, as well as further engineering-related problems. The present Special Issue gives a balanced view of the present state of the field of geoinformatics

    Using Linear Features for Aerial Image Sequence Mosaiking

    Get PDF
    With recent advances in sensor technology and digital image processing techniques, automatic image mosaicking has received increased attention in a variety of geospatial applications, ranging from panorama generation and video surveillance to image based rendering. The geometric transformation used to link images in a mosaic is the subject of image orientation, a fundamental photogrammetric task that represents a major research area in digital image analysis. It involves the determination of the parameters that express the location and pose of a camera at the time it captured an image. In aerial applications the typical parameters comprise two translations (along the x and y coordinates) and one rotation (rotation about the z axis). Orientation typically proceeds by extracting from an image control points, i.e. points with known coordinates. Salient points such as road intersections, and building corners are commonly used to perform this task. However, such points may contain minimal information other than their radiometric uniqueness, and, more importantly, in some areas they may be impossible to obtain (e.g. in rural and arid areas). To overcome this problem we introduce an alternative approach that uses linear features such as roads and rivers for image mosaicking. Such features are identified and matched to their counterparts in overlapping imagery. Our matching approach uses critical points (e.g. breakpoints) of linear features and the information conveyed by them (e.g. local curvature values and distance metrics) to match two such features and orient the images in which they are depicted. In this manner we orient overlapping images by comparing breakpoint representations of complete or partial linear features depicted in them. By considering broader feature metrics (instead of single points) in our matching scheme we aim to eliminate the effect of erroneous point matches in image mosaicking. Our approach does not require prior approximate parameters, which are typically an essential requirement for successful convergence of point matching schemes. Furthermore, we show that large rotation variations about the z-axis may be recovered. With the acquired orientation parameters, image sequences are mosaicked. Experiments with synthetic aerial image sequences are included in this thesis to demonstrate the performance of our approach

    Fleets of robots for environmentally-safe pest control in agriculture

    Get PDF
    Feeding the growing global population requires an annual increase in food production. This requirement suggests an increase in the use of pesticides, which represents an unsustainable chemical load for the environment. To reduce pesticide input and preserve the environment while maintaining the necessary level of food production, the efficiency of relevant processes must be drastically improved. Within this context, this research strived to design, develop, test and assess a new generation of automatic and robotic systems for effective weed and pest control aimed at diminishing the use of agricultural chemical inputs, increasing crop quality and improving the health and safety of production operators. To achieve this overall objective, a fleet of heterogeneous ground and aerial robots was developed and equipped with innovative sensors, enhanced end-effectors and improved decision control algorithms to cover a large variety of agricultural situations. This article describes the scientific and technical objectives, challenges and outcomes achieved in three common crops

    On the Use of Unmanned Aerial Systems for Environmental Monitoring

    Full text link
    [EN] Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small-and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air-and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, postprocessing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challenges.The present work has been funded by the COST Action CA16219 "HARMONIOUS-Harmonization of UAS techniques for agricultural and natural ecosystems monitoring". B. Toth acknowledges financial support by the Hungarian National Research, Development and Innovation Office (NRDI) under grant KH124765. J. Millerovd was supported by projects GA17-13998S and RVO67985939. Isabel and Jodo de Lima were supported by project HIRT (PTDC/ECM-HID/4259/2014-POCI-0145-FEDER016668).Manfreda, S.; Mccabe, MF.; Miller, PE.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.... (2018). On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sensing. 10(4):1-28. https://doi.org/10.3390/rs10040641S12810

    Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences

    Get PDF
    The aim of the Special Issue “Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences” was to present a selection of innovative studies using hyperspectral imaging (HSI) in different thematic fields. This intention reflects the technical developments in the last three decades, which have brought the capacity of HSI to provide spectrally, spatially and temporally detailed data, favoured by e.g., hyperspectral snapshot technologies, miniaturized hyperspectral sensors and hyperspectral microscopy imaging. The present book comprises a suite of papers in various fields of environmental sciences—geology/mineral exploration, digital soil mapping, mapping and characterization of vegetation, and sensing of water bodies (including under-ice and underwater applications). In addition, there are two rather methodically/technically-oriented contributions dealing with the optimized processing of UAV data and on the design and test of a multi-channel optical receiver for ground-based applications. All in all, this compilation documents that HSI is a multi-faceted research topic and will remain so in the future
    corecore