60,477 research outputs found

    Development of a client interface for a methodology independent object-oriented CASE tool : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    The overall aim of the research presented in this thesis is the development of a prototype CASE Tool user interface that supports the use of arbitrary methodology notations for the construction of small-scale diagrams. This research is part of the larger CASE Tool project, MOOT (Massey's Object Oriented Tool). MOOT is a meta-system with a client-server architecture that provides a framework within which the semantics and syntax of methodologies can be described. The CASE Tool user interface is implemented in Java so it is as portable as possible and has a consistent look and feel. It has been designed as a client to the rest of the MOOT system (which acts as a server). A communications protocol has been designed to support the interaction between the CASE Tool client and a MOOT server. The user interface design of MOOT must support all possible graphical notations. No assumptions about the types of notations that a software engineer may use can be made. MOOT therefore provides a specification language called NDL for the definition of a methodology's syntax. Hence, the MOOT CASE Tool client described in this thesis is a shell that is parameterised by NDL specifications. The flexibility provided by such a high level of abstraction presents significant challenges in terms of designing effective human-computer interaction mechanisms for the MOOT user interface. Functional and non-functional requirements of the client user interface have been identified and applied during the construction of the prototype. A notation specification that defines the syntax for Coad and Yourdon OOA/OOD has been written in NDL and used as a test case. The thesis includes the iterative evaluation and extension of NDL resulting from the prototype development. The prototype has shown that the current approach to NDL is efficacious, and that the syntax and semantics of a methodology description can successfully be separated. The developed prototype has shown that it is possible to build a simple, non-intrusive, and efficient, yet flexible, useable, and helpful interface for meta-CASE tools. The development of the CASE Tool client, through its generic, methodology independent design, has provided a pilot with which future ideas may be explored

    Development and Specification of Virtual Environments

    Get PDF
    This thesis concerns the issues involved in the development of virtual environments (VEs). VEs are more than virtual reality. We identify four main characteristics of them: graphical interaction, multimodality, interface agents, and multi-user. These characteristics are illustrated with an overview of different classes of VE-like applications, and a number of state-of-the-art VEs. To further define the topic of research, we propose a general framework for VE systems development, in which we identify five major classes of development tools: methodology, guidelines, design specification, analysis, and development environments. Of each, we give an overview of existing best practices

    A User Interface Management System Generator

    Get PDF
    Much recent research has been focused on user interfaces. A major advance in interface design is the User Interface Management System (UIMS), which mediates between the application and the user. Our research has resulted in a conceptual framework for interaction which permits the design and implementation of a UIMS generator system. This system, called Graphical User Interface Development Environment or GUIDE, allows an interface designer to specify interactively the user interface for an application. The major issues addressed by this methodology are making interfaces implementable, modifiable and flexible, allowing for user variability, making interfaces consistent and allowing for application diversity within a user community. The underlying goal of GUIDE is that interface designers should be able to specify interfaces as broadly as is possible with a manually-coded system. The specific goals of GUIDE are: The designer need not write any interface code. Action routines are provided by the designer or application implementator which implement the actions or operations of the application system. Action routines may have parameters. The designer is able to specify multiple control paths based on the state of the system and a profile of the user. Inclusion of help and prompt messages is as easy as possible. GUIDE\u27s own interface may be generated with GUIDE. GUIDE goes beyond previous efforts in UIMS design in the full parameter specification provided in the interface for application actions, in the ability to reference application global items in the interface, and in the pervasiveness of conditions throughout the system. A parser is built into GUIDE to parse conditions and provide type-checking. The GUIDE framework describes interfaces in terms of three components: what the user sees of the application world (user-defined pictures and user-defined picture classes) what the user can do (tasks and tools) what happens when the user does something (actions and decisions) These three are combined to form contexts which describe the state of the interface at any time

    Developing an open data portal for the ESA climate change initiative

    Get PDF
    We introduce the rationale for, and architecture of, the European Space Agency Climate Change Initiative (CCI) Open Data Portal (http://cci.esa.int/data/). The Open Data Portal hosts a set of richly diverse datasets – 13 “Essential Climate Variables” – from the CCI programme in a consistent and harmonised form and to provides a single point of access for the (>100 TB) data for broad dissemination to an international user community. These data have been produced by a range of different institutions and vary across both scientific and spatio-temporal characteristics. This heterogeneity of the data together with the range of services to be supported presented significant technical challenges. An iterative development methodology was key to tackling these challenges: the system developed exploits a workflow which takes data that conforms to the CCI data specification, ingests it into a managed archive and uses both manual and automatically generated metadata to support data discovery, browse, and delivery services. It utilises both Earth System Grid Federation (ESGF) data nodes and the Open Geospatial Consortium Catalogue Service for the Web (OGC-CSW) interface, serving data into both the ESGF and the Global Earth Observation System of Systems (GEOSS). A key part of the system is a new vocabulary server, populated with CCI specific terms and relationships which integrates OGC-CSW and ESGF search services together, developed as part of a dialogue between domain scientists and linked data specialists. These services have enabled the development of a unified user interface for graphical search and visualisation – the CCI Open Data Portal Web Presence

    Smart distribution board overload detector by using microcontroller

    Get PDF
    A statistic by Economic Planning Unit (EPU) on the electricity growth in Malaysia has shown an increment in line with economic growth [1]. In line with government policies, the energy supply industry has been molding itself to cater to the rapid development of the nation in hopes of creating a better and smarter nation [2]. There are many developments and implementation of smart energy consumption to save energy and cater to future energy challenges

    Do we really need to write documentation for a system? CASE tool add-ons: generator+editor for a precise documentation

    Full text link
    One of the common problems of system development projects is that the system documentation is often outdated and does not describe the latest version of the system. The situation is even more complicated if we are speaking not about a natural language description of the system, but about its formal specification. In this paper we discuss how the problem could be solved by updating the documentation automatically, by generating a new formal specification from the model if the model is frequently changed.Comment: In Proceedings International Conference on Model-Driven Engineering and Software Development (MODELSWARD'13

    Extended LTLvis Motion Planning interface (Extended Technical Report)

    Full text link
    This paper introduces an extended version of the Linear Temporal Logic (LTL) graphical interface. It is a sketch based interface built on the Android platform which makes the LTL control interface more straightforward and friendly to nonexpert users. By predefining a set of areas of interest, this interface can quickly and efficiently create plans that satisfy extended plan goals in LTL. The interface can also allow users to customize the paths for this plan by sketching a set of reference trajectories. Given the custom paths by the user, the LTL specification and the environment, the interface generates a plan balancing the customized paths and the LTL specifications. We also show experimental results with the implemented interface.Comment: 8 pages, 15 figures, a technical report for the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016

    A methodology for the design and evaluation of user interfaces for interactive information systems

    Get PDF
    The definition of proposed research addressing the development and validation of a methodology for the design and evaluation of user interfaces for interactive information systems is given. The major objectives of this research are: the development of a comprehensive, objective, and generalizable methodology for the design and evaluation of user interfaces for information systems; the development of equations and/or analytical models to characterize user behavior and the performance of a designed interface; the design of a prototype system for the development and administration of user interfaces; and the design and use of controlled experiments to support the research and test/validate the proposed methodology. The proposed design methodology views the user interface as a virtual machine composed of three layers: an interactive layer, a dialogue manager layer, and an application interface layer. A command language model of user system interactions is presented because of its inherent simplicity and structured approach based on interaction events. All interaction events have a common structure based on common generic elements necessary for a successful dialogue. It is shown that, using this model, various types of interfaces could be designed and implemented to accommodate various categories of users. The implementation methodology is discussed in terms of how to store and organize the information

    Speeding up SOR Solvers for Constraint-based GUIs with a Warm-Start Strategy

    Full text link
    Many computer programs have graphical user interfaces (GUIs), which need good layout to make efficient use of the available screen real estate. Most GUIs do not have a fixed layout, but are resizable and able to adapt themselves. Constraints are a powerful tool for specifying adaptable GUI layouts: they are used to specify a layout in a general form, and a constraint solver is used to find a satisfying concrete layout, e.g.\ for a specific GUI size. The constraint solver has to calculate a new layout every time a GUI is resized or changed, so it needs to be efficient to ensure a good user experience. One approach for constraint solvers is based on the Gauss-Seidel algorithm and successive over-relaxation (SOR). Our observation is that a solution after resizing or changing is similar in structure to a previous solution. Thus, our hypothesis is that we can increase the computational performance of an SOR-based constraint solver if we reuse the solution of a previous layout to warm-start the solving of a new layout. In this paper we report on experiments to test this hypothesis experimentally for three common use cases: big-step resizing, small-step resizing and constraint change. In our experiments, we measured the solving time for randomly generated GUI layout specifications of various sizes. For all three cases we found that the performance is improved if an existing solution is used as a starting solution for a new layout
    • …
    corecore