997 research outputs found

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    Emerging privacy challenges and approaches in CAV systems

    Get PDF
    The growth of Internet-connected devices, Internet-enabled services and Internet of Things systems continues at a rapid pace, and their application to transport systems is heralded as game-changing. Numerous developing CAV (Connected and Autonomous Vehicle) functions, such as traffic planning, optimisation, management, safety-critical and cooperative autonomous driving applications, rely on data from various sources. The efficacy of these functions is highly dependent on the dimensionality, amount and accuracy of the data being shared. It holds, in general, that the greater the amount of data available, the greater the efficacy of the function. However, much of this data is privacy-sensitive, including personal, commercial and research data. Location data and its correlation with identity and temporal data can help infer other personal information, such as home/work locations, age, job, behavioural features, habits, social relationships. This work categorises the emerging privacy challenges and solutions for CAV systems and identifies the knowledge gap for future research, which will minimise and mitigate privacy concerns without hampering the efficacy of the functions

    An Event Based Digital Forensic Scheme for Vehicular Networks

    Get PDF
    The software in today's cars has become increasingly important in recent years. The development of high-tech driver assistance devices has helped fuel this movement. This tendency is anticipated to accelerate with the advent of completely autonomous vehicles. As more modern vehicles incorporate software and security-based solutions, "Event-Based digital forensics," the analysis of digital evidence of accidents and warranty claims, has become increasingly significant. The objective of this study is to ascertain, in a realistic setting, whether or not digital forensics can be successfully applied to a state-of-the-art automobile. We did this by dissecting the procedure of automotive forensics, which is used on in-car systems to track the mysterious activity by means of digital evidence. We did this by applying established methods of digital forensics to a state-of-the-art car.Our research employs specialized cameras installed in the study areas and a log of system activity that may be utilized as future digital proof to examine the effectiveness of security checkpoints and other similar technologies. The goal is to keep an eye on the vehicles entering the checkpoint, look into them if there is any reason to suspect anything, and then take the appropriate measures. The problem with analyzing this data is that it is becoming increasingly complex and time-consuming as the amount of data that has been collected keeps growing. In this paper, we outline a high-level methodology for automotive forensics to fill in the blanks, and we put it through its paces on a network simulator in a state-of-the-art vehicle to simulate a scenario in which devices are tampered with while the car is in motion. Here, we test how well the strategy functions. Diagnostics over IP (Diagnostics over IP), on-board diagnostics interface, and unified diagnostic services are all used during implementation. To work, our solution requires vehicles to be able to exchange diagnostic information wirelessly.These results show that it is possible to undertake automotive forensic analysis on state-of-the-art vehicles without using intrusion detection systems or event data recorders, and they lead the way towards a more fruitful future for automotive forensics. The results also show that modern autos are amenable to forensic automotive analysis
    • …
    corecore